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PREFACE

r
I "'HE first edition of this book, which was the first English
*

Diophantus, appeared in 1885, and has long been out of

print. Inquiries made for it at different times suggested to me

that it was a pity that a treatise so unique and in many respects

so attractive as the Arithmetica should once more have become

practically inaccessible to the English reader. At the same time

I could not but recognise that, after twenty-five years in which so

much has been done for the history of mathematics, the book

needed to be brought up to date, Some matters which in 1885

were still subject of controversy, such as the date of Diophantus,

may be regarded as settled, and some points which then had to

be laboured can now be dismissed more briefly. Practically the

whole of the Introduction, except the chapters on the editions of

Diophantus, his methods of solution, and the porisms and other

assumptions found in his work, has been entirely rewritten and

much shortened, while the chapters on the methods and on the

porisms etc., have been made fuller than before. The new text of

Tannery (Teubner 1893, 1895) has enabled a number of obscure

passages, particularly in Books V and VI, to be cleared up and,

as a basis for a reproduction of the whole work, is much superior to

the text of Bachet. I have taken the opportunity to make my
version of the actual treatise somewhat fuller and somewhat closer

to the language of the original. In other respects also I thought

I could improve upon a youthful work which was my first essay in

the history of Greek mathematics. When writing it I was solely

concerned to make Diophantus himself known to mathematicians,

833088



vi PREFACE

and I did not pay sufficient attention to Fermat's notes on the

various problems. It is well known that it is in these notes that

many of the great propositions discovered by Fermat in the

theory of numbers are enshrined
; but, although the notes are

literally translated in Wertheim's edition, they do not seem to

have appeared in English ;
moreover they need to be supple-

mented by passages from the correspondence of Fermat and from

the Doctrinae analyticae Inventum Novum of Jacques de Billy.

The histories of mathematics furnish only a very inadequate

description of Fermat's work, and it seemed desirable to attempt

to give as full an account of his theorems and problems in

or connected with Diophantine analysis as it is possible to

compile from the scattered material available in Tannery and

Henry's edition of the Oeuvres de Fermat (1891 1896). So much

of this material as could not be conveniently given in the notes

to particular problems of Diophantus I have put together in

the Supplement, which is thus intended to supply a missing

chapter in the history of mathematics. Lastly, in order to make

the book more complete, I thought it right to add some of the

more remarkable solutions of difficult Diophantine problems given

by Euler, for whom such problems had a great fascination
;
the last

section of the Supplement is therefore devoted to these solutions.

T. L. H.

October, 1910.
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INTRODUCTION

CHAPTER I

DIOPHANTUS AND HIS WORKS

THE divergences between writers on Diophantus used to begin,

as Cossali said 1
, with the last syllable of his name. There is now,

however, no longer any doubt that the name was Diophantar, not

Diophanter
2

.

The question of his date is more difficult Abu'lfaraj, the

Arabian historian, in his History of tlte Dynasties, places Diophantus
under the Emperor Julian (A.D. 361-3), but without giving any

authority; and it may be that the statement is due simply to a

confusion of our Diophantus with a rhetorician of that name,
mentioned in another article of Suidas, who lived in the time of

Julian*. On the other hand, Rafael Bombelli in his Algebra,

1
Cossali, Origine, trasporto in Italia, primi progressi in essa ddr Algebra (Parma,

1797-9), I. p. 61 : "Su la desinenza del nome comincia la diversita tra gli scrittori."

1 Greek authority is overwhelmingly in favour of Diophant<w. The following is the

evidence, which is collected in the second volume of Tannery's edition of Diophantus

(henceforward to be quoted as "Dioph.," "Dioph. n. p. 36" indicating page 36 of

Vol. ii., while "Dioph. II. 20" will mean proposition 20 of Book II.): Suidas s.v.

'TraTia (Dioph. n. p. 36), Theon of Alexandria, on Ptolemy's Syntaxis Book I. c. 9

(Dioph. II. p. 35), Anthology, Epigram on Diophantus (Ep. xiv. 126; Dioph. II. p. 60),

Anonymi prolegomena in Introductionem arithmeticam Nicomachi (Dioph. II. p. 73),

Georgii Pachymerae paraphrasis (Dioph. n. p. 122), Scholia of Maximus Planudes

(Dioph. n. pp. 148, 177, 178 etc.), Scholium on larublichus / Nicomachi arithm. inirod.,

ed. PisteUi, p. 127 (Dioph. n. p. 72), a Scholium on Dioph. n. 8 from the MS. "A"
(Dioph. n. p. 260), which is otherwise amusing (H ifwxn aw> Ai6#arre, eft; perk TOV

Sarai-a frexa Trft Siv/coXi'as TUV re iXXwr ffov tfewpij/uiTwr KCU Si) ecu TOV rttporros ffcwpj-

ftATm,
" Your soul to perdition, Diophantus, for the difficulty of your problems in general

and of this one in particular ") ; John of Jerusalem ( loth c.) alone ( Vita loannis Damas-
ceni xi. : Dioph. n. p. 36), if the reading of the MS. Parisinus 1559 is right, wrote, in

the plural, wj UvOaydpcu. 1} AIO^OJTOI, where however Aio^oirai is dearly a mistake for

3
\i3dvios, ffoQurriis 'Arrtox/s, rwr tfl 'louXtoyoO TOV /ScurtAlcds

Qeodoffiov TOV -rpfff^vripov Qajryariov xarp6j, /ua^TTjj AIOC><UTOI/.

H. D.
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published in 1572, says dogmatically that Diophantus lived under

Antoninus Pius (138-161 A.D.), but there is no confirmation of this

date either.

The positive evidence on the subject can be given very shortly.

An upper limit is indicated by the fact that Diophantus, in his

book on Polygonal Numbers, quotes from Hypsicles a definition

of such a number 1
. Hypsicles was also the writer of the sup-

plement to Euclid's Book XIII. on the Regular Solids known as

Book XIV. of the Elements
;
hence Diophantus must have written

later than, say, 150 B.C. A lower limit is furnished by the fact that

Diophantus is quoted by Theon of Alexandria 2
;
hence Diophantus

wrote before, say, 350 A.D. There is a wide interval between

150 B.C. and 350 A.D., but fortunately the limits can be brought
closer. We have a letter of Psellus (nth c.) in which Diophantus
and Anatolius are mentioned as writers on the Egyptian method

of reckoning.
"
Diophantus," says Psellus 3

,

"
dealt with it more

accurately, but the very learned Anatolius collected the most

essential parts of the doctrine as stated by Diophantus in a

different way (reading erepwf) and in the most succinct form,

dedicating (irpoae^xav^a-e) his work to Diophantus." It would

appear, therefore, that Diophantus and Anatolius were contem-

poraries, and it is most likely that the former would be to the

latter in the relation of master to pupil. Now Anatolius wrote

about 278-9 A.D., and was Bishop of Laodicea about 280 A.D. We
may therefore safely say that Diophantus flourished about 250 A.D.

or not much later. This agrees well with the fact that he is not

quoted by Nicomachus (about 100 A.D.), Theon of Smyrna (about

130 A.D.) or lamblichus (end of 3rd c.).

1
Dioph. I. p. 470-2.

2 Theo Alexandrinus in primum librum Ptolemaei Mathematicae Compositionis (on c.

IX.) : see Dioph. II. p. 35, Ka.0' a KOI &i6<pavr6s 0ij<rr TTJS yap parados d/uera^Tou o&o-ijs

/cat fffTWffrjs irai/Tore, TO iro\\aTT\a(na'6/j.ei>ov elSos CTT' avrrjv avrb TO eZSoj &TTCU K.r.e.

3
Dioph. II. p. 38-9 : irepl de rrjs aiyvimaKrjs fj,e668ov Tatirrjs Ai6<f>ai>Tos (j.ev di^\a^i>

aKpi^ffTfpov, 6 54 \oyiibraTos 'AvctToXios TCI ffweKTiKurara /J.^pij rrjs KOT' iKfivov (iriffTrnj.?)*

airo\el;a/J.evos ertpw (PfWpws or eraifnf) Aio^di'Ty ffwoTTTiKurara Trpoffe<p&vr]ffe. The MSS.
read rr^pw, which is apparently a mistake for erfyws or possibly for eralpip. Tannery con-

jectures rif fralpif, but this is very doubtful ; if the article had been there, Aio^avTy T

fralpq would have been better. On the basis of eratpy Tannery builds the further

hypothesis that the Dionysius to whom the Arithmetica is dedicated is none other than

Dionysius who was at the head of the Catechist school at Alexandria 232-247 and was

Bishop there 248-265 A.D. Tannery conjectures then that Diophantus was a Christian

and a pupil of Dionysius (Tannery, "Sur la religion des derniers mathematicians de

1'antiquite," Extrait des Annales de Philosophic Chretienne, 1896, p. 13 sqq.). It is

however difficult to establish this (Hultsch, art. "Diophantos aus Alexandreia" in Pauly-

Wissowa's Real-Encyclopddie der classischen Altertumswissenchaften}.
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The only personal particulars about Diophantus which are

known are those contained in the epigram-problem relating to him
in the Anthology

x
. The solution gives 84 as the age at which he

died. His boyhood lasted 14 years, his beard grew at 21, he

married at 33; a son was born to him five years later and died, at

the age of 42, when his father was 80 years old. Diophantus' own
death followed four years later 2

. It is clear that the epigram was

written, not long after his death, by an intimate personal friend

with knowledge of and taste for the science which Diophantus
made his life-work 3

.

The works on which the fame of Diophantus rests are :

(1) The Arithmetica (originally in thirteen Books).

(2) A tract On Polygonal Numbers.

Six Books of the former and part of the latter survive.

Allusions in the Aritkmetica imply the existence of

(3) A collection of propositions under the title of Porisms;
in three propositions (3, 5 and 16) of Book V. Diophantus quotes
as known certain propositions in the Theory of Numbers, prefixing
to the statement of them the words " We have it in the Porisms

that
"

(e^o/iey eV rot? TLopt,afj,acriv ort K.r.e.}.

A scholium on a passage of lamblichus where he quotes a

dictum of certain Pythagoreans about the unit being the dividing
line (fj,e06piov) between number and aliquot parts, says "thus

Diophantus in the Moriastica* for he describes as 'parts' the

progression without limit in the direction of less than the unit."

Tannery thinks the Moptacrrucd may be ancient scholia (now

lost) on Diophantus I. Def. 3 sqq.
5

;
but in that case why should

Diophantus be supposed to be speaking ? And, as Hultsch

1
Anthology, Ep. xiv. 126; Dioph. n. pp. 60-1.

2 The epigram actually says that his boyhood lasted | of his life; his beard grew
after T\ more ; after f more he married, and his son was born five years later ; the son

lived to half his father's age, and the father died four years after his son. Cantor
( Gesch.

d. Math. I3 , p. 465) quotes a suggestion of Heinrich Weber that a better solution is

obtained if we assume that the son died at the time when his father's age was double his,

not at an age equal to half the age at which his father died. In that case

is would substitute lof for 14, i6 for 21, 25$ for 33, 30! for 42, 6i for 80,
and 65^ for 84 above. I do not see any advantage in this solution. On the contrary,
4 think the fractional results are an objection to it, and it is to be observed that the

^nholiast
has the solution 84, derived from the equation

\x + T^X+ fx+ 5 + \x+ 4= x.
3
Hultsch, art. Diophantos in Pauly-Wissowa's Real-Encyclopadie.

4 lamblichus In Nicomachi arithm. introd. p. 127 (ed. Pistelli) ; Dioph. II. p. 72.

jjs

5
Dioph. n. p. 72 note.

I 2



4 INTRODUCTION

remarks, such scholia would more naturally have been quoted
as a-yoXia and not by the separate title Mopiavriicd

1
. It may

have been a separate work by Diophantus giving rules for reckon-

ing with fractions
;
but I do not feel clear that the reference

may not simply be to the definitions at the beginning of the

Arithmetica.

With reference to the title of the Arithmetica, we may observe

that the meaning of the word dpid^TiKd here is slightly different

from that assigned to it by more ancient writers. The ancients

drew a marked distinction between dpidpijTiKij and \OJIO-TIKIJ,

though both were concerned with numbers. Thus Plato states

that dpid/j,rjTiKrj is concerned with the abstract properties of

numbers (as odd and even, etc.), whereas \oyia-TiKtj deals with the

same odd and even, but in relation to one another 2
. Geminus also

distinguishes the two terms 3
. According to him dpiO^riK^ deals

with numbers in themselves, distinguishing linear, plane and solid

numbers, in fact all the forms of number, starting from the unit,

and dealing with the generation of plane numbers, similar and

dissimilar, and then with numbers of three dimensions, etc.

\oyiariKij on the other hand deals, not with the abstract properties

of numbers in themselves, but with numbers of concrete things

(ala-drjTwv, sensible objects), whence it calls them by the names of

the things measured, e.g. it calls some by the names /^XtTi?? and

<iaXtT?79
4
. But in Diophantus the calculations take an abstract

form (except in V. 30, where the question is to find the number
of measures of wine at two given prices respectively), so that the

distinction between XO^IO-TIKIJ and dpiQ/jLijTucr/ is lost.

We findjthe Arithmetica quoted under slightly different titles.

Thus the anonymous author of prolegomena to Nicomachus"

Introductio Arithmetica speaks of Diophantus'
"
thirteen Books of

Arithmetic 5
." A scholium on lamblichus refers to " the last

theorem of the first Book of Diophantus' Elements of Arithmetic

1
Hultsch, loc. cit.

2
Gorgias, 451 B, C : rd fjxv &\\a Kadairep 17 dpiB'^T/TIKT; i] hoyicrTiKri Hxfi

'
iffpi TO avrb

ydp dffTi, rb re apriov Kal TO irepiTTbv dia<p4pei 5 roffovrov, OTL Kal irpos avra Kal irpds

d\\ri\a TTWJ ?xfi TXTjtfous tiriffKoirel TO irepiTrov Kal TO apTiov i) \oyiaTiK7].
3

Proclus, Comment, on Euclid I., p. 39, 14-40, 7.

4 Cf. Plato, Laws 819 B, c, on the advantage of combining amusement with instruction

in arithmetical calculation, e.g. by distributing apples or garlands (^Xow T TLVUV

diavofMl Kal ffT<pdvuv) and the use of different bowls of silver, gold, or brass etc. (tfudXas

a/Mi xpvffov Kal X&XKOU *cai apytipov Kal rotoi/raw TIV&V aXXwc KepawuvTes, ol 5 6'Xas TTWS

5ia5t56rcj, oirep elirov, eij iraidiav tvapubrrovTes ras TUV dva

5
Dioph. II. p. 73, 26.
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)
1
." A scholium on one of the epigrams

in Metrodorus' collection similarly speaks of the " Elements of

Diophantus
2
."

None of the MSS. which we possess contain more than the

first six Books of the Arithmetic^ the only variation being that

some few divide the six Books into seven 3
, while one or two give

the fragment on Polygonal Numbers with the number vm. The
idea that Regiomontanus saw, or said he saw, a MS. containing
the thirteen Books complete is due to a misapprehension. There

is no doubt that the missing Books were 'lost at a very early date.

Tannery
4
suggests that Hypatia's commentary extended only to

the first six Books, and that she left untouched the remaining

seven, which accordingly were first forgotten and then lost
;

he

compares the case of Apollonius' Conies, the first four Books of

which were preserved by Eutocius, who wrote a commentary on

them, while the rest, which he did not include in his commentary,
were lost so far as the Greek text is concerned. While, however,

three of the last four Books of the Conies have fortunately reached

us through the Arabic, there is no sign that even the Arabians

ever possessed the missing Books of Diophantus. Thus the

second part of an algebraic treatise called the Fakhrl by Abu
Bekr Muh. b. al-Hasan al-Karkhl (d. about 1029) is a collection of

problems in determinate and indeterminate analysis which not

only show that their author had deeply studied Diophantus, but in

many cases are taken direct
frcjmjihe Arithmetica, with the change,

occasionally, of some of the constants. In the fourth section of

this work, which begins and ends with problems corresponding to

problems in Diophantus Books II. and in. respectively, are 25

problems not found in Diophantus ;
but the differences from

Diophantus in essential features (e.g. several of the problems lead

to equations giving irrational results, which are always avoided

by Diophantus), as well as other internal evidence, exclude the

hypothesis that we have here a lost Book of Diophantus
5
. Nor is

there any sign that more of the work than we possess was known

1
Dioph. II. p. 72, 17 ; lamblichus (ed. Pistelli), p. 132, 12.

2
Dioph. II. p. 62, 25.

3
e.g. Vaticanus gr. 200, Scorialensis 0-1-15, ard the Broscius MS. in the University

Library of Cracow
;
the two last divide the first Book into two, the second beginning

immediately after the explanation of the sign for minus (Dioph. I. p. 14, i).
4
Dioph. II. p. xvii, xviii.

5 See F. Woepcke, Extrait du Fakhrl, traiti cTAlgtbre par Abou Bekr Mohammed
ben Alhafan AlkarkhT (tnanuscrit 952, supplement arabe de la bibliotheque fnipdriale), Paris,

1853.
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to Abu'l Wafa al-Buzjam (940-998 A.D.), who wrote a "commentary

(tafslr) on the algebra of Diophantus
"

as well as a " Book of

proofs of the propositions used by Diophantus in his work..."

These facts again point to the conclusion that the lost Books were

lost before the loth c.

Tannery's suggestion that Hypatia's commentary was limited

to the six Books, and the parallel of Eutocius' commentary on

Apollonius' Conies, imply that it is the last seven Books, and the

most difficult, which 'are lost. This view is in strong contrast to

that which Jiad previously found most acceptance among com-

petent authorities. The latter view was most clearly put, and

most ably supported, by Nesselmann 1
, though Colebrooke 2 had

already put forward a conjecture to the same effect
;
and historians

of mathematics such as Hankel, Moritz Cantor, and Giinther have

accepted Nesselmann's conclusions, which, stated in his own

words, are as follows: (i) that much less of Diophantus is wanting
than would naturally be supposed on the basis of the numerical

proportion of 6 to 13; (2) that the missing portion is not to be

looked for at the end but in the middle of the work, and indeed

mostly between the first and second Books. Nesselmann's general

argument is that, if we carefully read the last four Books, from the

third to the sixth, we find that Diophantus moves in a rigidly

defined and limited circle of methods and artifices, and that any

attempts which he makes to free himself are futile
;

"
as often as

he gives the impression that he wishes to spring over the magic
circle drawn round him, he is invariably thrown back by an

invisible hand on the old domain already known
;
we see, similarly,

in half-darkness, behind the clever artifices which he seeks to use

in order to free himself, the chains which fetter his genius, we hear

their rattling, whenever, in dealing with difficulties only too freely

imposed upon himself, he knows of no other means of extricating

himself except to cut through the knot instead of untying it."

Moreover, the sixth Book forms a natural conclusion to the whole,

in that it consists of exemplifications of methods explained and

used in the preceding Books. The subject is the finding of right-

angled triangles in rational numbers such that the sides and area

satisfy given conditions, the geometrical property of the right-angled

triangle being introduced as a fresh condition additional to the

purely arithmetical conditions which have to be satisfied in the

1
Algebra der Griechen, pp. 264-273.

2
Algebra of the Hindus, Note M, p. Ixi.
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problems of the earlier Books. But, assuming that Diophantus'

resources are at an end in the sixth Book, Nesselmann has to

suggest possible topics which would have formed approximately

adequate material for the equivalent of seven Books of the

Arithmetical. The first step is to consider what is actually wanting
which we should expect to find, either as foreshadowed by the

author himself or as necessary for the elucidation or completion of

the whole subject. Now the first Book contains problems leading

to determinate equations of the first degree ;
the remainder of the

work is a collection of problems which, with few exceptions, lead

to indeterminate equations of the second degree, beginning with

simpler cases and advancing step by step to more complicated

questions. There would have been room therefore for problems

involving (i) determinate equations of the second degree and (2)

indeterminate equations of the first. There is indeed nothing to

show that (2) formed part of the writer's plan ;
but on the other

hand the writer's own words in Def. 1 1 at the beginning of the

work promise a discussion of the solution of the complete or

adfected quadratic, and it is clear that he employed his method of

solution in the later Books, where in some cases he simply states

the solution without working it out, while in others, where the

roots are "
irrational," he gives approximations which indicate

that he was in possession of a scientific method. Pure quadratics

Diophantus regarded as simple equations, taking no account of the

negative -root. Indeed it would seem that he adopted as his

ground for the classification of quadratics, not the index of the

highest power of the unknown quantity contained in it, but the

number of terms left in it when reduced to its simplest form. His

words are 1
:

"
If the same powers of the unknown occur on both

sides, but with different coefficients (prj 6fjW7r\r)0i) Se), we must

take like from like until we have one single expression equal to

another. If there are on both sides, or on either side, any terms

with negative coefficients (ev eXXefy-eo-t riva eiS?)), the defects must

be added on both sides until the terms on both sides have

none but positive coefficients (evvTrap^ovra), when we must again
take like from like until there remains one term on each side.

This should be the object aimed at in framing the hypotheses of

propositions, that is to say, to reduce the equations, if possible,

until one term is left equated to one term. But afterwards I will

1
Dioph. I. Def. u, p. 14.
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show you also how, when two terms are left equal to one term,

such an equation is solved." That is to say, reduce the quadratic,

if possible, to one of the forms ax*= bx, axz
=c, or bx = c\ I will

show later how to solve the equation when three terms are left of

which any two are equal to the third, z.^.'the complete quadratic

ax* bx c o, excluding the case ax"- + bx + c = o. The exclusion

of the latter case is natural, since it is of the essence of the work

to find rational and positive solutions. Nesselmann might have

added that Diophantus' requirement that the equation, as finally

stated, shall contain only positive terms, of which two are equated
to the third, suggests that his solution would deal separately with

the three possible cases (just as Euclid makes separate cases of the

equations in his propositions VI. 28, 29), so that the exposition

might occupy some little space. The suitable place for it would

be between the first and second Books. There is no evidence

tending to confirm Nesselmann's further argument that the six

Books may originally have been divided into even more than

seven Books. He argues from the fact that there are often better

natural divisions in the middle of the Books (e.g. at II. 19) than

between them as they now stand
;

thus there is no sign of a

marked division between Books I. and II. and between Books II.

and in., the first five problems of Book II. and the first four of

Book in. recalling similar problems in the preceding Books

respectively. But the latter circumstances are better explained,
as Tannery explains them, , by the supposition that the first

problems of Books II. and III. are interpolated from some ancient

commentary. Next Nesselmann points out that there are a

number of imperfections in the text, Book V. especially having
been "

treated by Mother Time in a very stepmotherly fashion
"

;

thus it seems probable that at V. 19 three problems have dropped
out altogether. Still he is far from accounting for seven whole

Books; he has therefore to press into the service the lost

"Porisms" and the tract on Polygonal Numbers.
If the phrase which, as we have said, occurs three times in

Book V., "We have it in the Porisms that...," indicates that the

"Porisms" were a definite collection of propositions concerning
the properties of certain numbers, their divisibility into a certain

number of squares, and so on, it is possible that it was from the

same collection that Diophantus took the numerous other pro-

positions which he assumes, either explicitly enunciating them, or

implicitly taking them for granted. May we not then, says
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Nesselmann, reasonably suppose the " Porisms
"

to have formed

an introduction to the indeterminate and semi-determinate analy-

sis of the second degree which forms the main subject of the

Arithmetica, and to have been an integral part of the thirteen

Books, intervening, probably, between Books I. and II. ? Schulz* on

the other hand, considered this improbable, and in recent years

Hultsch 1 has definitely rejected the theory that Diophantus filled

one or more Books of his Arithmetica exclusively with Porisms.

Schulz's argument is, indeed, not conclusive. It is based on the

consideration that "
Diophantus expressly says that his work deals

with arithmeticalproblems*" \
but what Diophantus actually says is

"
Knowing you, O Dionysius, to be anxious to learn the solution

(or, nerhaps,
'

discovery,' evpeviv) of problems in numbers, I have

endeavoured, beginning from the foundations on which the study is

bufit up, to expound (v-rrofTrfja-ai
= to lay down) the nature and

force subsisting in numbers," the last of which words would easily
c ver 'propositions in the theory of numbers, while "

propositions,"

ot T:

prJems," is the word used at the end of the Preface, where

he says, "let us now proceed to the propositions (7rpoT<ra<?)

which have been treated in thirteen Books."

On reconsideration of the whole matter, I now agree in the

view of Hultsch that the Porisms were not a separate portion of

the Arithmetica or included in the Arithmetica at all. If they had

been, I think the expression
" we have it in the Porisms

" would

have been inappropriate. In the first place, the Greek mathe-

maticians do not usually give references in such a form as this

to propositions which they cite when they come from the same

work as that in which they are cited
;
as a rule the propositions

are quoted without any references at all. The references in this

case would, on the assumption that the Porisms were a portion of

the thirteen Books, more naturally have been to particular pro-

positions of particular Books (cf. Eucl. XII. 2,
" For it was proved

1 Hultsch, loc. cit,

2 The whole passage of Schulz is as follows (pref. xxi):
" Es ist daher nicht unwahr-

scheinlich, dass diese Porismen eine eigene Schrift unseres Diophantus waren, welche

vorziiglich die Zusammensetzung der Zahlen aus gewissen Bestandtheilen zu ihrem

Gegenstande hatten. Konnte man diese Schrift als einen Bestandtheil des grossen in

dreizehn Biichern abgefassten arithmetischen Werkes ansehen, so ware es sehr erklarbar,

dass gerade dieser Theil, der den blossen Liebhaber weniger anzog, verloren ging. Da
indess Diophantus ausdriicklich sagt, sein Werk behandele arithmetisfhe Probleme, so hat

wenigstens die letztere Annahme nur einen geringen Grad von \Vahrscheinlichkeit."
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in the first theorem of the loth Book that..."). But a still vaguer
reference would have been enough, even if Diophantus had chosen

to give any at all
;

if the propositions quoted had preceded those

in which they are used, some expression like TOVTO yap irpo-

yeypaTTTai,
"
for this has already been proved," or SeSeitcrai yap

TOVTO,
" for this has been shown," would have sufficed, or, if the

propositions occurred later, some expression like J>? efr;? Sei^BijareTai

or Set%#/7reTat v$> fipwv va-repov, "as will be proved in due course"

or "later." The expression "we have it in the Porisms" (in the

plural) would have been still more inappropriate if the "Porisms"

had been, as Tannery supposes
1
,
not collected together as one or

more Books of the Arithmetica, but scattered about in the work as

corollaries to particular propositions
2

. And, as Hultsch says, it is

hard, on Tannery's supposition, to explain why the three partv.iiar

theorems quoted from " the Porisms
"

were lost, while a ','air

number of other additions survived, partly under the title iropia-^.

(cf. I. 34, I. 38), partly as "lemmas to what follows," Xf///,/*r

e^9 (cf. lemmas before IV. 34, 35, 36, V. 7, 8, VI. 12, 15). O>

other hand, there is nothing improbable in the supposition that

Diophantus was induced by the difficulty of his problems to give

place in a separate work to the "
porisms

"
necessary to their

solution.

The hypothesis that the Porisms formed part of the Arithmet-

ica being thus given up, we can hardly hold any longer to

Nesselmann's view of the contents of the lost Books and their

place in the treatise; and I am now much more inclined to the

opinion of Tannery that it is the last and the most difficult Books

which are lost. Tannery's argument seems to me to be very
attractive and to deserve quotation in full, as finally put in the

preface to Vol. II. of his Diophantus
3
. He replies first to the

assumption that Diophantus could not have proceeded to problems
more difficult than those of Book V.

" But if the fifth or the sixth

Book of the Arithmetica had been lost, who, pray, among us would

have believed that such problems had ever been attempted by the

Greeks? It would be the greatest error, in any case in which a

1
Dioph. II. p. xix.

2 Thus Tannery holds (loc. cit.) that the solution of the complete quadratic was given
in the form of corollaries to I. 27, 30; and he refers the three "porisms" quoted in v. 3,

5, 16 respectively to a second (lost) solution of III. io, to III. 15, and to iv. i, 2.

3
Dioph. II. p. xx.
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thing cannot clearly be proved to have been unknown to all the

ancients, to maintain that it could not have been known to some

Greek mathematician. If we do not know to what lengths

Archimedes brought the theory of numbers (to say nothing of

other things), let us admit our ignorance. But, between the

famous problem of the cattle and the most difficult of Diophantus'

problems, is there not a sufficient gap to require seven Books to

fill it? And, without attributing to the ancients what modern

mathematicians have discovered, may not a number of the things

attributed to the Indians and Arabs have been drawn from

Greek sources ? May not the same be said of a problem solved by
Leonardo of Pisa, which is very similar to those of Diophantus but

is nc now to be found in the Arithmetical In fact, it may fairly

be said that, when Chasles made his reasonably probable restitution

of the Porisms of Euclid, he, notwithstanding the fact that he had

Pappus' lemmas to help him, undertook a more difficult task than

he would have undertaken if he had attempted to fill up seven

Diophantine Books with numerical problems which the Greeks

may reasonably be supposed to have solved."

On the assumption that the lost portion came at the end of the

existing six Books, Schulz supposed that it contained new methods

of solution in addition to those used in Books I. to VI., and in

particular extended the method of solution by means of the double

equation (Bi7r\rj tcrori;? or SiTrXoia-oTT)?). By means of the double

equation Diophantus shows how to find a value of the unknown

which will make two expressions (linear or quadratic) containing it

simultaneously squares. Schulz then thinks that he went on, in

the lost Books, to make three such expressions simultaneously

squares, i.e. advanced to a triple equation. But this explanation
does not in any case take us very far.

Bombelli thought that Diophantus went on to solve deter-

minate equations of the third and fourth degree
1

;
this view,

however, though natural at that date, when the solution of cubic

and biquadratic equations filled so large a space in contemporary

investigations and in Bombelli's own studies, has nothing to

support it.

Hultsch 2 seems to find the key to the question in the fragment
of the treatise on Polygonal Numbers and the developments to

1
Cossali, I. pp. 75, 76.

2
Hultsch, loc. fit.
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which it might have been expected to lead. In this he differs

from Tannery, who says that, as Serenus' treatise on the sections

of cones and cylinders was added to the mutilated Conies of

Apollonius consisting of four Books only, in order to make up a

convenient volume, so the tract on Polygonal Numbers was added

to the remains of the Arithmetical, though forming no part of the

larger work 1
. Thus Tannery would seem to deny the genuineness

of the whole tract on Polygonal Numbers, though in his text he

only signalises the portion beginning with the enunciation of the

problem
" Given a number, to find in how many ways it can be

a polygonal number "
as a " vain attempt by a commentator

"
to

solve this problem. Hultsch, on the other hand, thinks we may
conclude that Diophantus really solved the problem. He points
out moreover that the beginning of the tract is like the beginning
of Book I. of the Arithmetica in containing definitions and pre-

liminary propositions. Then came the difficult problem quoted,
the discussion of which breaks off in our text after a few pages ;

and to this it would be easy to tack on a great variety of other

problems. Again, says Hultsch, the supplementary propositions

added by Bachet may serve to give an approximate idea of the

difficulty of the problems which were probably treated in Books VII.

and the following. And between these and the bold combination

of a triangular and a square number in the Cattle-Problem

stretches, as Tannery says, a wide domain which was certainly

not unknown to Diophantus, but was his hunting-ground for the

most various problems. Whether Diophantus dealt with plane

numbers, and with other figured numbers, such as prisms and

tetrahedra, is uncertain.

The name of Diophantus was used, as were the names of Euclid,

Archimedes and Heron in their turn, for the purpose of palming
off the compilations of much later authors. Tannery prints in

his edition three fragments under the head of "Diophantus

Pseudepigraphus." The first 2
,
which is not " from the Arithmetic

of Diophantus
"
as its heading states, is worth notice as containing

some particulars of one of " two methods of finding the square

root of any square number"; we are told to begin by writing the

number "
according to the arrangement of the Indian method," t.e.

according to the Indian numerical notation which reached us

through the Arabs. The fragment is taken from a Paris MS.
1

Dioph. ii. p. xviii.
2
Dioph. n. p. 3, 3-14.
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(Supplem. gr. 387), where it follows a work with the title 'Ap^)

7779 fi
r

yd\r)<; KOI 'Iv8itcfj<; "^r}(pi(f)opia<; (i.e. ifnj<f>o<j>opia<;),
written in

1252 and raided about half a century later by Maximus Planudes.

The second fragment
1

is the work edited by C. Henry in 1879 as

Opusculum de multiplicatione et divisione sexagesimalibus Diophanto
vel Pappo attribuendum. The third 2

, beginning with Aio(j>dvTov

eTri7re8ofj,6TpiKd, is a compilation made in the Byzantine period out

of late reproductions of the yecof^erpovfieva and <nepeop,rpovfiva
of Heron. The second and third fragments, like the first, have

nothing to do with Diophantus.

1
Dioph. II. p. 3, 15-15, 17.

2
Dioph. n. p. 15, 18-31, 22.



CHAPTER II

THE MSS. OF AND WRITERS ON DIOPHANTUS

FOR full details of the various MSS. and of their mutual

relations, reference should be made to the prefaces to the first and

second volumes of Tannery's edition 1
. Tannery's account needs

only to be supplemented by a description given by Gollob 2 of

another MS. supposed by Tannery to be non-existent, but actually

rediscovered in the Library of the University of Cracow (Nr 544).

Only the shortest possible summary of the essential facts will be

given here.

After the loss of Egypt the work of Diophantus long remained

almost unknown among the Byzantines ; perhaps one copy only
survived (of the Hypatian recension), which was seen by Michael

Psellus and possibly by the scholiast to lamblichus, but of which

no trace can be found after the capture of Constantinople in 1 204.

From this one copy (denoted by the letter a in Tannery's table of

the MSS.) another MS. (a) was copied in the 8th or 9th century ;

this again is lost, but is the true archetype of our MSS. The

copyist apparently intended to omit all scholia, but, the distinction

between text and scholia being sometimes difficult to draw, he

included a good deal which should have been left out. For

example, Hypatia, and perhaps scholiasts after her, seem to have

added some alternative solutions and a number of new problems ;

some of these latter, such as II. 1-7, 17, 18, were admitted into the

text as genuine.

The MSS. fall into two main classes, the ante-Planudes class,

as we may call it, and the Planudean. The most ancient and the

best of all is Matritensis 48 (Tannery's A\ which was written in

the 1 3th century and belongs to the first class; it is evidently a

most faithful copy of the lost archetype (a). Maximus Planudes

wrote a systematic commentary on Books I. and II., and his scholia,

1
Dioph. I. pp. iii-v, II. pp. xxii-xxxiv.

2 Eduard Gollob, "Ein wiedergefundener Diophantuscodex
"

in Zeitschrift filr Math.
u. Physik, XLIV. (1899), hist.-litt. Abtheilung, pp. 137-140.
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which are edited by Tannery for the first time, are preserved in the

oldest representative which we possess of the Planudean class,

namely, Marcianus 308 (Tannery's B^, itself apparently copied
from an archetype of the I4th century now lost, with the exception
of ten leaves which survive in Ambrosianus Et 157 sup.

Tannery shows the relation of the MSS. in the following

diagram :

(a) Lost copy of the Hypatian recension,

(a) Lost copy, of eighth or ninth c.

(FIRST CLASS)

1
(PLANUDEAN CLASS)

Auria's recension made up out of MSS. 2, 3, 15 above and Xylander's
translation: 25. Parisinus 2380= Z>.

26. Ambrosianus E 5 sup.

27. MS. (Patavinus) of Broscius (Brozek) now at

28. Lost MS. of Cardinal du Perron.

Cracow.
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The addition of a few notes as regards the most important and

interesting of the MSS., in the order of their numbers in Tannery's

arrangement, will now sufficiently complete the story.

1. The best and most ancient MS., that of Madrid (Tannery's

A), was unfortunately spoiled at a late date by corrections made,

especially in the first two Books, from some MS. of the Planudean

class, in such a way that the original reading is sometimes entirely

erased or made quite illegible. In these cases recourse must be

had to the Vatican MS. 191.

2. The MS. Vaticanus graecus 191 was copied from A before

it had suffered the general alteration by means of a MS. of the

other class, though not before various other corrections had been

made in different hands not easily distinguished ;
thus V some-

times has readings which Tannery found to have arisen from some
correction in A. A appears to have been at Rome for a con-

siderable period at the time when V was copied ;
for the librarian

who wrote the old table of contents 1 at the beginning of V inserted

in the margin in one place
2 the word a/ofa/^evo?, which had been

omitted, direct from the original (A).

3. Vat. gr. 304 was copied from V, not from A
; Tannery

inferred this mainly from a collation of the scholia, and he notes

that the word apa/iei/o<? above mentioned is here brought into the

text by the erasure of some letters. This MS. 304, being very

clearly written, was used thenceforward to make copies from. The
next five MSS. do not appear to have had any older source.

4. The MS. Parisinus 2379 (Tannery's C) was that used by
Bachet for his edition. It was written by one loannes Hydruntinus
after 1545, and has the peculiarity that the first two Books were

copied from the MS. Vat. gr. 200 (a MS. of the Planudean class),

evidently in order to include the commentary of Planudes, while

the MS. Vat. gr. 304 belonging to the pre-Planudes class was

followed in the remaining Books, no doubt because it was con-

sidered superior. Thus the class of which C is the chief repre-

sentative is a sort of mixed class.

5. 6. Parisinus 2378 = P, and Neapolitans III C 17, were

copied by Angelus Vergetius. In the latter Vergetius puts the

1 The MS. V was made up of various MSS. before separated. The old table of

contents has Aio^dWou d/ji^ijTcm}- apfioviicii. didQopa. The appoviKa include the Intro-

duction to Harmony by Cleonides, but without any author's name. This fact sufficiently

explains the error of Ramus in saying, Schola mathematics Bk I. p. 35, "Scripserat et

Diophantus harmonica.
"

2
Dioph. i. p. 2, 5-6.



THE MSS. OF AND WRITERS ON DIOPHANTUS 17

numbers A, B, F, A, E, Z, H at the top of the pages (as we put

headlines) corresponding to the different Books, implying that he

regarded the tract on Polygonal Numbers as Book VII.

The other MSS. of the first class call for no notice, and we pass
to the Planudean class.

9. Tannery, as he tells us, congratulated himself upon finding
in Ambrosianus Et 157 sup. ten pages of the archetype of the

class, and eagerly sought for new readings. So far, however, as he

was able to carry his collation, he found no difference from the

principal representative of the class (B^) next to be mentioned.

10. The MS. Marcianus 308 (= B^) of the 1 5th century formerly

belonged to Cardinal Bessarion, and was seen by Regiomontanus
at Venice in 1464. It contains the recension by Planudes with his

commentary.
11. It seems certain that the Wolfenbuttel MS. Guelferbytanus

Gudianus I (i5th c.) was that which Xylander used for his

translation
; Tannery shows that, if this was not the MS. lent

to Xylander by Andreas Dudicius Sbardellatus, that MS. must

have been lost, and there is no evidence in support of the latter

hypothesis. It is not possible to say whether the Wolfenbuttel

MS. was copied from Marcianus 308 (B^) or from the com-

plete MS. of which Ambrosianus Et 157 sup. preserves the ten

leaves.

12. Palatinus gr. 391 (end of i6th c.) has notes in German in

the margin which show that it was intended to print from it
;

it

was written either by Xylander himself or for him. It is this MS.
of which Claudius Salmasius (Claude de Saumaise, 1588-1653)
told Bachet that it contained nothing more than the six Books,
with the tract on Polygonal Numbers.

13. Reginensis 128 was copied at the end of the i6th century
from the Wolfenbuttel MS.

14. 15. Ambrosianus A 91 sup. and Vaticanus gr. 200 both

come from B^ ;
as they agree in omitting V. 28 of Diophantus, one

was copied from the other, probably the latter from the former.

They were both copied by the same copyist for Mendoza in 1545.

Vat. gr. 200 has headings which make eight Books
; according to

Tannery the first Book is numbered a', the fourth 8OV
;
before V. 20

(in Bachet's numbering) should this be IV. 20 ? is the heading
Ato<ai/TOL> 6", before the fifth Book Aio<j>dvTov r", before the sixth

At,o(j)dvTov f ", and before the tract on Polygonal Numbers

&.io<f>dvTov 77" ;
this wrong division occurs in the next three MSS.

H. D. 2
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(16, 17, 1 8 in the diagram), all of which seem to be copied from

Vat. 200.

The MSS. numbered 20, 21, 22, 23 in the diagram are of the

hybrid class derived from Parisinus 2379 (C). Scorialensis ft-I-15

and Scorialensis R-II-3, the latter copied from the former, have

the first Book divided into two (cf. p. 5 above), and so make
seven Books of the Arithmetica and an eighth Book of the

Polygonal Numbers.

27. The Cracow MS. has the same division into Books as the

MSS. last mentioned. According to Gollob, the collation of this

MS., so far as it was carried in 1899, showed that it agrees in the

main with A (the best MS.), B^ (Marcianus 308) and C (Parisinus

2379) ; but, as it contains passages not found in the two latter, it

cannot have been copied from either of them.

25. Parisinus 2380 appears to be the copy of Auria's

Diophantus mentioned by Schulz as having been in the library of

Carl von Montchall and bearing the title
"
Diophanti libri sex, cum

scholiis graecis Maximi Planudae, atque liber de numeris poly-

gonis, collati cum Vaticanis codicibus, et latine versi a Josepho
Auria 1

."

The first commentator on Diophantus of whom we hear is

Hypatia, the daughter of Theon of Alexandria
;
she was murdered

by Christian fanatics in 415 A.D. According to Suidas she wrote

commentaries on Diophantus, on the Astronomical Canon (sc. of

Ptolemy) and on the Conies of Apollonius
2

. Tannery suggests
that the remarks of Michael Psellus (nth c.) at the beginning of

his letter about Diophantus, Anatolius, and the Egyptian method
of arithmetical reckoning were taken bodily from some MS. of

Diophantus containing an ancient and systematic commentary ;

and he believes this commentary to have been that of Hypatia. I

have already mentioned the attractive hypothesis of Tannery that

Hypatia's commentary extended only to our six Books, and that

this accounts for the loss of the rest.

Georgius Pachymeres (1240 to about 1310) wrote in Greek a

paraphrase of at least a portion of Diophantus. Sections 25-44 of

1
Schulz, Diophantus, pref. xliii.

2 Suidas s.v. 'firaria: typa\f/ev virbnvwa els Aufyavrov, <ets> rbv dffrpovofUKbv Kavdva,

efc TO. KuviKa 'AiroXXowfou vir&fu>7ifM. So Tannery reads, following the best MSS. ; he

gives ample reasons for rejecting Kuster's conjecture ets bioQdvTov rbv dffrpovofj.tKi>v Kavova,
viz. (i) that the order of words would have been TOV Aiotpavrov derpovofUKov Kavova,

(i) that there is nothing connecting Diophantus with astronomy, while Suidas mentions,
s.v. Qiuv, a commentary et's rbv UroXe^aiov -irpoxeipov Kavova.
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this survive and are published by Tannery in his edition of

Diophantus
1
. The chapters lost at the beginning may have con-

tained general observations and introductions to the first two

paragraphs of Book I.
;
section 25 begins with the third paragraph

(Def. i), and the rest of the fragment takes us up to the problem
in I. ii.

Soon afterwards Maximus Planudes (about 1260-1310) wrote

a systematic commentary on Books I., II. This is also included by
Tannery in his edition 2

.

There are a number of other ancient scholia, very few of which

seemed to Tannery to be worth publication
3
.

But in the meantime, and long before the date of Georgius

Pachymeres, the work of Diophantus had become known in Arabia,
where it was evidently the subject of careful study. We are told

in the Fihrist, the main part of which was written in the year

987 A.D., (i) that Diophantus was a Greek of Alexandria who
wrote a book "On the art of algebra

4
/' (2) that Abu'l Wafa

al-Buzjanl (940-998) wrote (a) a commentary (tafsir) on the

algebra of Diophantus and (b} a book of "
proofs to the pro-

positions used by Diophantus in his book and to that which

he himself (Abu'l Wafa) stated in his commentary
5
," (3) that

Qusta. b. Luqa al-Ba'labakkl (died about 912) wrote a "com-

mentary on three and a half Books of Diophantus' work on

arithmetical problems
6
." Qusta b. Luqa, physician, philosopher,

astronomer, mathematician and translator, was the author of works

on Euclid and of an "
introduction to geometry

"
in the form of

question and answer, and translator of the so-called Books XIV., XV.

of Euclid
;
other Arabian authorities credit him with an actual

"
translation of the book of Diophantus on Algebra

7
." Lastly, we

are told by Ibn abi Usaibi'a of "
marginal glosses which Ishaq b.

Yunis (died about 1077), the physician of Cairo, after Ibn al-

ii aitham, added to the book of Diophantus on algebraic problems."
The title is somewhat obscure ; probably Ibn al-Haitham (about

965-1039), who wrote several works on Euclid, wrote a commentary
on the Arithmetic* and Ishaq b. Yunis added glosses to this

commentary
8
.

Dioph. ii. pp. 78-122.
2
Dioph. II. pp. 125-255.

The few that he gives are in Vol. II. pp. 256-260; as regards the collection in

general cf. Hultsch in Berliner philologisctie Wochenschrift, 1896, p. 615.

Fihrist, ed. Suter, p. 22. 5
ibid, p. 39.

6 ibid, p. 43.

Suter, Die Mathematiker und Astroiiomen der Araber, 1900, p. 41.

Suter, op. cit, pp. 107-8. Cf. Bibliotheca Malhematica iv3 , 1903-4, p. 296.

2 2
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To Regiomontanus belongs the credit of being the first to call

attention to the work of Diophantus as being extant in Greek.

We find two notices by him during his sojourn in Italy, whither he

journeyed after the death of his teacher Georg von Peurbach,

which took place on the 8th April, 1461. In connexion with

lectures on the astronomy of Alfraganus which he gave at Padua

he delivered an Oratio introductoria in omnes scientias mathe-

maticas 1
. In this he observed: "No one has yet translated from

the Greek into Latin the fine thirteen Books of Diophantus, in

which the very flower of the whole of Arithmetic lies hid, the ars

rei et census which to-day they call by the Arabic name of

Algebra
2
." Secondly, he writes to Bianchini, in answer to a letter,

dated 5th February, 1464, that he has found at Venice "Diofantus,"

a Greek arithmetician, who has not yet been translated into Latin
;

that in his preface Diophantus defines the various powers up to

the sixth
;
but whether he followed out all the combinations of

these Regiomontanus does not know: "for not more than six

Books are found, though in the preface he promises thirteen. If

this book, which is really most wonderful and most difficult, could

be found entire, I should like to translate it into Latin, for the

knowledge of Greek which I have acquired while staying with my
most reverend master [Bessarion] would suffice for this...." He

goes on to ask Bianchini to try to discover a complete copy and,

in the meantime, to advise him whether he should begin to translate

the six Books 3
. The exact date of the Oratio is not certain.

Regiomontanus made some astronomical observations at Viterbo

in the summer and autumn of 1462. He is said to have spent a

year at Ferrara, and he seems to have gone thence to Venice.

Extant letters of his written at Venice bear dates from 27th July,

1463, to 6th July, 1464, and it may have been from Venice

that he made his visit to Padua. At all events the Oratio at

Padua must have been near in time to the discovery of the

MS. at Venice.

Notwithstanding that attention was thus called to the work, it

1 Printed in the work Rudimenta astronomica Alfragani, Niirnberg, 1537.
2 As the ars rei et census, the solution of determinate quadratic equations, is not found

in our Diophantus, it would seem that at the time of the Oratio Regiomontanus had only
looked at the MS. cursorily, if at all.

3 The letter to Bianchini is given on p. 135 of Ch. Th. v. Murr's Memorabilia,

Norimbergae, 1786, and partly in Doppelmayer's Historische Nachricht von den Niirn-

bergischen Mathematicis und Kiinstlern (Niirnberg, 1730), p. 5, note 7.
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seems to have remained practically a closed book from the date of

Maximus Planudes to about 1570. Luca Paciuolo, towards the

end of the isth c., Cardano and Tartaglia about the middle of the

1 6th, make no mention of it. Only Joachim Camerarius, in a

letter published in I556
1

,
mentions that there is a MS. of

Diophantus in the Vatican which he is anxious to see. Rafael

Bombelli was the first to find a MS. in the Vatican and to conceive

the idea of publishing the work. This was towards 1570, for in his

Algebra
2

published in 1572 Bombelli tells us that he had in the

years last past discovered a Greek book on Algebra written by
"
a

certain Diofantes, an Alexandrine Greek author, who lived in the

time of Antoninus Pius
"

; that, thinking highly of the contents of

the work, he and Antonio Maria Pazzi determined to translate it
;

that they actually translated five books out of the seven into

which the MS. was divided
;
but that, before the rest was finished,

they were called away from it by other labours. Bombelli did not

carry out his plan of publishing Diophantus in a translation, but

he took all the problems of the first four Books and some of those

of the fifth, and embodied them in his Algebra, interspersing them

with his own problems. He took no pains to distinguish

Diophantus' problems from his own
;
but in the case of the former

he adhered pretty closely to the original, so that Bachet admits his

obligations to him, remarking that in many cases he found

1 De Graecis Latinisque numerorum ttotis et praeterea Saracenis seu Indicts, etc. etc.,

studio Joachimi Camerarii, Papeberg, 1556.
3 Nesselmann tells us that he has not seen this work but takes his information about

it from Cossali. I was fortunate enough to find in the British Museum one of the copies

dated 1579 (really the same as the original edition of 1572 except that the title-page and

date are new, and a dedicatory letter on pp. 3-8 is reprinted ; there were not two

separate editions). The title is L"Algebra, opera di Rafael Bombelli da Bologna diuisa in

tre Libri In Bologna, Per Giovanni Rossi, MDLXXIX. The original of the passage
from the preface is :

"Questi anni passati, essendosi ritrouato una opera greca di questa disciplina nella

libraria di Nostro Signore in Vaticano, composta da un certo Diofante Alessandrino Autor

Greco, il quale fu a tempo di Antonin Pio, e havendomela fatta vedere Messer Antonio

Maria Pazzi Reggiano, publico lettore delle Matematiche in Roma, e giudicatolo con lui

Autore assai intelligente de' numeri (ancorche non tratti de' numeri irrational!, ma solo

in lui si vede vn perfetto ordine di operare) egli, ed io, per arrichire il mondo di cosl fatta

opera, ci dessimo a tradurlo, e cinque libri (delli sette che sono) tradutti ne habbiamo ; lo

restante non hauendo potuto finire per gli trauagli auenuti all' uno, e all' altro; e in delta

opera habbiamo ritrouato, ch' egli assai volte cita gli Autori Indiani, col che mi ha fatto

conoscere, che questa disciplina appo -gl' indiani prima fu, che a gli Arabi." The last

words stating that Diophantus often quotes from Indian authors are no doubt due to

Bombelli's taking for part of Diophantus the tract of Maximus Planudes about the Indian

method of reckoning.
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Bombelli's translation better than Xylander's and consequently

very useful for the purpose of amending the latter 1
.

It may be interesting to mention a few points of notation in

this work of Bombelli. At the beginning of Book II. he explains

that he uses the word "tanto" to denote the unknown quantity,

not "cosa" like his predecessors ;
and his symbol for it is -i, the

square of the unknown (x^) is ,., the cube d; and so on. or plus

and -minus (piu and mend) he uses the initial letters / and m.

Thus corresponding to x+6 we should find in Bombelli ii/>. 6,

and for x* + $x 4, \^ p. 5-1 m. 4. This notation shows, as will be

seen later, some advance upon that of Diophantus in one important

respect.

The next writer upon Diophantus was Wilhelm Holzmann who

published, under the Graecised form of his name, Xylander, by
which he is generally known, a work bearing the title : Diophanti

Alexandrini Rerum Arithmeticarum Libri sex, quorum primi duo

adiecta habent Scholia Maximi (tit coniectura esf) Planudis. Item

Liber de Numeris Polygonis sen Multangulis, Opus incomparabile,

uerae Arithmeticae Logisticae perfectionem continens, paucis adhuc

uisum. A Gut/. Xylandro Augustano incredibili labore Latinc

redditum, et Commentariis explanatum, inque lucem editum, ad
Illustriss. Principem Ludovicum Vuirtembergensem. Basileae per
Eusebium Episcopium, et Nicolai Fr. haeredes. MDLXX V. Xylander
was according to his own statement a "

public teacher of Aristotelian

philosophy in the school at Heidelberg
2
." He was a man of almost

universal culture 3
,
and was so thoroughly imbued with the classical

literature, that the extraordinary aptness of his quotations and his

wealth of expression give exceptional charm to his writing whenever
he is free from the shackles of mathematical formulae and techni-

calities. The Epistola Nuncupatoria is addressed to the Prince

Ludwig, and Xylander neatly introduces it by the line
" Offerimus

numeros, numeri sunt principe digni." This preface is very quaint
and interesting. He tells us how he first saw the name of

Diophantus mentioned in Suidas, and then found that mention

1 "Sed suas Diophanteis quaestionibus ita immiscuit, ut has ab illis distinguere non
sit in promptu, neque vero se fidum satis interpretem praebuit, cum passim verba

Diophanti immutet, hisque pleraque addat, pleraque pro arbitrio detrahat. In multis
nihilominus interpretationem Bombellii, Xilandriana praestare, et ad hanc emendandam
me adjuvisse ingenue fateor." Ad lectorem.

3 "Publicus philosophiae Aristoteleae in schola Heidelbergensi doctor."
3 Even Bachet, who, as we shall see, was no favourable critic, calls him " Vir omnibus

disciplinis excultus."
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had been made of his work by Regiomontanus as being extant

in an Italian library and having been seen by him. But, as the

book had not been edited, he tried to think no more of it but,

instead, to absorb himself in the study of such arithmetical books

as he could obtain, and in investigations of his own 1
. Self-taught

except in so far as he could learn from published works such as

those of Christoff Rudolff (of the "Coss"), Michael Stifel, Cardano,

Nunez, he yet progressed so far as to be able to add to, modify
and improve what he found in those works. As a result he fell

into what Heraclitus called oiija-iv, lepav VOGOV, that is, into the

conceit of "
being somebody

"
in the field of Arithmetic and

"Logistic"; others too, themselves learned men, thought him an

arithmetician of exceptional ability. But when he first became

acquainted with the problems of Diophantus (he continues) right

reason brought such a reaction that he might well doubt whether he

ought previously to have regarded himself as an object of pity or of

derision. He considers it therefore worth while to confess publicly his

own ignorance at the same time that he tries to interest others in

the work of Diophantus, which had so opened his eyes. Before this

critical time he was so familiar with methods of dealing with surds

that he had actually ventured to add something to the discoveries

of others relating to them
;
the subject of surds was considered to

be of great importance in arithmetical questions, and its difficulty

1 I cannot refrain from quoting the whole of this passage :
" Sed cum ederet nemo :

cepi desiderium hoc paulatim in animo consopire, et eonim quos consequi poteram
Arithmeticorum librorum cognitione, et meditationibus nostris sepelire. Veritatis porro

apud me est autoritas, ut ei coniunctum etiam cum dedecore meo testimonium lubentissime

perhibeam. Quod Cossica seu Algebrica (cum his enim reliqua comparata, id sunt quod
umbrae Homerice in Necya ad animam Tiresiae) ea ergo quod non assequebar modo,

quanquam mutis duntaxat usus preceptoribus caetera at/roSidaKTos, sed et augere, uariare,

adeoque corrigere in loco didicissem, quae summi et fidelissimi in docendo uiri Christifer

Rodolphus Silesius, Micaelus Stifelius, Cardanus, Nonius, aliique litteris mandauerant :

incidi in otyaiv, Upav vbaov, ut scite appellauit Heraclitus sapientior multis aliis philoso-

phis, hoc est, in Arithmetica, et uera Logistica, putaui me esse aliquid : itaque de me

passim etiam a multis, iisque doctis uiris iudicatum fuit, me non de grege Arithmeticum

esse. Verum ubi primum in Diophantea incidi : ita me recta ratio circumegit, ut flendusne

mihi ipsi antea, an uero ridendus fuissem, haud iniuria dubitauerim. Operae precium est

hoc loco et meam inscitiam inuulgare, et Diophantei operis, quod mihi nebulosam istam

caliginem ab oculis detersit, immo eos in coenum barbaricum defossos eleuauit et repur-

gauit, gustum aliquem exhibere. Surdorum ego numerorum tractationem ita tenebatn,

ut etiam addere aliorum inuentis aliquid non poenitendum auderem, atque id quidem in

rebus arithmeticis magnum habetur, et difficultas istarum rerum multos a rnathematibus

deterret. Quanto autem hoc est praeclarius, in iis problematis, quae surdis etiam

numeris uix posse uidentur explicari, rem eo deducere, ut quasi solum arithmeticum

uertere iussi obsurdescant illi plane, et ne mentio quidem eorum in tractatione ingenio-

sissimarum quaestionum admittatur.
"
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was even such as to deter many from the study of mathematics.

"But how much more splendid," says Xylander, "in the case of

problems which seem to be hardly capable of solution even with

the help of surds, to bring the matter to the point that, while the

surds, when bidden (so to speak) to plough the arithmetic soil,

become true to their name and deaf to entreaty, they are not so

much as mentioned in these most ingenious solutions !

" He then

describes the enormous difficulties which beset his work owing
to the corruptions in his text. In dealing, however, with the

mistakes and carelessness of copyists he was, as he says, no novice;

for proof of which he appeals to his editions of Plutarch, Stephanus
and Strabo. This passage, which is good reading, but too long

to reproduce here, I give in full in the note 1
. Next Xylander

tells us how he came to get possession of a manuscript of Dio-

phantus. In October of the year 1571 he made a journey to

Wittenberg ;
while there he had conversations on mathematical

subjects with two professors, Sebastian Theodoric and Wolfgang
Schuler by name, who showed him a few pages of a Greek

1 " Id uero mihi accidit durum et uix superabile incommodum, quod mirifice deprauata
omnia inueni, cum neque problematum expositio interdum integra esset, ac passim numeri

(in quibus sita omnia esse in hoc argumento, quis ignorat?) tarn problematum quam
solutionum siue explicationum corruptissimi. Non pudebit me ingenue fateri, qualem me
heic gesserim. Audacter, et summo cum feruore potius quam alacritate animi opus ipsum
initio sum aggressus, laborque mihi omnis uoluptati fuit, tantus est meus rerum arithmeti-

carum amor, quin et gratiam magnam me apud omnes liberalium scientiarum amatores ac

patronos initurum, et praeclare de rep. litteraria meriturum intelligebam, eamque rem
mihi laudi (quam a bonis profectam nemo prudens aspernatur) gloriaeque fortasse etiam

emolumento fore sperabam. Progressus aliquantulum, in salebras incidi : quae tantum

abest ut alacritatem meam retuderint, ut etiam animos mihi addiderint, neque enim mihi

novum aut insolens est aduersus librariorum incuriam certamen, et hac in re militaui, (ut

Horatii nostri uerbis utar) non sine gloria, quod me non arroganter dicere, Dio,

Plutarchus, Strabo, Stephanusque nostri testantur. Sed cum mox in ipsum pelagus
monstris scatens me cursus abripuit : non despondi equidem animum, neque manus dedi,

sed tamen saepius ad oram unde soluissem respexi, quam portum in quern esset euadendum

cogitando prospicerem, depraehendique non minus uere quam eleganter ea cecinisse

Alcaeum, quae (si possum) Latine in hac quasi uotiua mea tabula scribam.

Qui uela uentis uult dare, dum licet,

Cautus futuri praeuideat modum
Cursus. mare ingressus, marine

Nauiget arbitrio necesse est.

Sane quod de Echeneide pisce fertur, eum nauim cui se adplicet remorari, poene credibile

fecit mihi mea cymba tot mendorum remoris retardata. Expediui tamen me ita, ut facile

omnes mediocri de his rebus iudicio praediti, intellecturi sint incredibilem me laborem et

aerumnas difficilimas superasse : pudore etiam stimulatum oneris quod ultro mihi impos-
uissem, non perferendi. Paucula quaedam non plane explicata, studio et certis de causis

in alium locum reiecimus. Opus quidem ipsum ita absoluimus ut neque eius nos pudere
debeat, et Arithmeticae Logisticesque studiosi nobis se plurimum debere sint haud dubie

professuri."
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manuscript of Diophantus and informed him that it belonged to

Andreas Dudicius whom Xylander describes as "Andreas Dudicius

Sbardellatus, hoc tempore Imperatoris Romanorum apud Polonos

orator." On his departure from Wittenberg Xylander wrote out

and took with him the solution of a single problem of Diophantus,
to amuse himself with on his journey. This he showed at Leipzig
to Simon Simonius Lucensis, a professor at that place, who wrote to

Dudicius on his behalf. A few months afterwards Dudicius sent

the MS. to Xylander and encouraged him to persevere in his

undertaking to translate the Arithmetica into Latin. Accordingly

Xylander insists that the glory of the whole achievement belongs
in no less but rather in a greater degree to Dudicius than to

himself. Finally he commends the work to the favour of Prince

Ludwig, extolling the pursuit of arithmetical and algebraical

science and dwelling in enthusiastic anticipation on the influence

which the Prince's patronage would have in helping and advancing
the study of Arithmetic 1

. This Epistola Nuncupatoria bears the

date I4th August, I574
3
. Xylander died on the loth of February

in the year following that of the publication, 1 576.

Tannery has shown that the MS. used by Xylander was

Guelferbytanus Gudianus I. Bachet observes that he has not been

able to find out whether Xylander ever published the Greek text,

though parts of his commentary seem to imply that he had, or at

least intended to do so. It is now clear that he intended to bring

out the text, but did not carry out his intention. Tannery observes

that the MS. Palatinus gr. 391 seems to have been written either by

Xylander himself or for him, and there are German notes in the

margin showing that it was intended to print from it.

Xylander's achievement has been, as a rule, quite inadequately

appreciated. Very few writers on Diophantus seem to have studied

the book itself: a fact which may be partly accounted for by its

rarity. Even Nesselmann, whose book appeared in 1842, says that

he has never been able to find a copy. Nesselmann however seems

to have come nearest to a proper appreciation of the value of the

work : he says
"
Xylander's work remains, in spite of the various

1 " Hoc non modo tibi, Princeps Illustrissime, honorificum erit, atque gloriosum ; sed

te labores nostros approbante, arithmeticae studium cum alibi, turn in tua Academia et

Gymnasiis, excitabitur, confirmabitur, prouehetur, et ad perfectam eiusscientiam multi tuis

auspiciis, nostro labore perducti, magnam hac re tuis in remp. beneficiis accessionem

factam esse gratissima commemoratione praedicabunt."
2 "

Heidelberga. postrid. Eidus Sextiles CID ID LXXIV."
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defects which are unavoidable in a first edition of so difficult an

author, especially when based on only one MS. and that full of

errors, a highly meritorious achievement, and does not deserve

the severe strictures which it has sometimes had passed upon it.

It is true that Xylander has in many places not understood his

author, and has misrepresented him in others
;

his translation is

often rough and un-Latin, this being due to a too conscientious

adherence to the actual wording of the original ;
but the result

was none the less brilliant on that account. The mathematical

public was put in possession of Diophantus' work, and the

appearance of the translation had an immediate and enormous

influence on the development and shaping of Algebra
1
." As a

rule, the accounts of Xylander's work seem to have been based

on what Bachet says about it and about his obligations to it.

When I came to read Bachet myself and saw how disparaging,

as a rule, his remarks upon Xylander were, I could not but suspect

that they were unfair. His repeated and almost violent repudiation
of obligation to Xylander suggested to me the very thing which he

disclaimed, that he was under too great obligation to his predecessor
to acknowledge it duly. I was therefore delighted at my good
fortune in finding in the Library of Trinity College, Cambridge,
a copy of Xylander, and so being able to judge for myself of

the relation of the later to the earlier work. The result was to

confirm entirely what I had suspected as to the unfair attitude

taken up by Bachet towards his predecessor. I found it every-

where
;
even where it is obvious that Xylander's mistakes or

difficulties are due only to the hopeless state of his solitary MS.
Bachet seems to make no allowance for the fact. The truth is that

Bachet's work could not have been as good as it was but for the

pioneer work of Xylander; and it is the great blot in Bachet's

otherwise excellent edition that he did not see fit to acknowledge
the fact.

I must now pass to Bachet's work itself. It was the first

edition published which contained the Greek text, and appeared
in 1621 bearing the title: Diophanti Alexandrini Arithmeticorum

libri sex, et de numeris multangulis liber unus. Nunc primiim
Graece et Latine editi, atque absolutissimis Commentariis illustrati.

Auctore Claudia Gaspare Baclieto Meziriaco Sebusiano, V.C. Lutetiae

Parisiorum, Sumptibus Hieronymi Drovart"1
,
via Jacobaea, sub Scuto

1 Nesselmann, p. 279-80.
2 For "

sumptibus Hieronymi Drovart etc.
" some copies have "

sumptibus Sebastiani



THE MSS. OF AND WRITERS ON DIOPHANTUS 27

Solari. MDCXXI. Bachet's Greek text is based, as he tells us,

upon a MS. which he calls "codex Regius," now in the Bibliotheque

Nationale at Paris (Parisinus 2379) ;
this MS. is his sole authority,

except that Jacobus Sirmondus had part of a Vatican MS. (Vat.

gr. 304) .transcribed for him. He professes to have produced a

good Greek text, having spent incalculable labour upon its emenda-

tion, to have inserted in brackets all additions which he made to it,

and to have given notice of all corrections, except those of an

obvious or trifling nature
;
a few passages he has left asterisked, in

cases where correction could not be safely ventured upon. He
is careful to tell us what previous works relating to the subject he

had been able to consult. First he mentions Xylander (he spells

the name as X/lander throughout), who had translated the whole of

Diophantus, and commented upon him throughout, "except that

he scarcely touched a considerable part of the fifth book, the whole

of the sixth and the treatise on multangular numbers, and even

the rest of his work was not very successful, as he himself admits

that he did not thoroughly understand a number of points." Then
he speaks of Bombelli (as already mentioned) and of the Zetetica of

Vieta (in which the author treats in his own way a large number
of Diophantus' problems : Bachet thinks that he so treated them

because he despaired of restoring the book completely). Neither

Bombelli nor Vieta (says Bachet) made any attempt to demonstrate

the difficult porisms and abstruse theorems in numbers which

Diophantus assumes as known in many places, or sufficiently

explained the causes of his operations and artifices. All these

omissions on the part of his predecessors he thinks he has supplied

in his notes to the various problems and in the three books of

"Porisms" which he prefixed to the work 1
. As regards his Latin

translation, he says that he gives us Diophantus in Latin from the

version of Xylander most carefully corrected, in which he would

have us know that he has done two things in particular, first,

Cramoisy, via Jacobaea, sub Ciconiis." The copy (from the Library of Trinity College,

Cambridge) which I used in preparing my first edition has the former words ;
a copy in

the Library of the Athenaeum Club has the latter.

1 On the nature of some of Bachet's proofs Nicholas Saunderson (formerly Lucasian

Professor) remarks in Elements of Algebra, 1740, apropos of Dioph. ill. 15 :

" M. Bachet

indeed in the i6th and i7th props, of his second book of Porisms has given us demonstra-

tions, such as they are, of the theorems in the problem : but in the first place he

demonstrates but one single case of those theorems, and in the next place the demonstra-

tions he gives are only synthetical, and so abominably perplexed withal, that in each

demonstration he makes use of all the letters in the alphabet except I and O, singly to

represent the quantities he has there occasion for.
*
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corrected what was wrong and filled the numerous lacunae,

secondly, explained more clearly what Xylander had given in

obscure or ambiguous language ;

"
I confess however," he says,

" that this made so much change necessary, that it is almost

fairer to attribute the translation to me than to Xilander. But if

anyone prefers to consider it as his, because I have held fast, tooth

and nail, to his words when they do not misrepresent Diophantus,
I have no objection

1
." Such sentences as these, which are no

rarity in Bachet's book, are certainly not calculated to increase

our respect for the author. According to Montucla 2
,
"the historian

of the French Academy tells us
"
that Bachet worked at this edition

during the course of a quartan fever, and that he himself said that,

disheartened as he was by the difficulty of the work, he would never

have completed it, had it not been for the stubbornness which his

malady generated in him.

As the first edition of the Greek text of Diophantus, this work,

in spite of any imperfections we may find in it, does its author all

honour.

The same edition was reprinted and published with the addition

of Fermat's notes in 1670: Diophanti Alexandrini Arithmeticortim

libri sex, et de numeris multangiilis liber unus. Cum commentariis

C. G. Bacheti V.C. et obseruationibus D. P. de Fermat Senatoris

Tolosani. Accessit Doctrinae Analyticae inuentum nouum, collectum

ex variis eiusdem D. de Fermat Epistolis. Tolosae, Excudebat

Bemardus Bosc, e Regione Collegii Societatis Jesu. MDCLXX.
This edition was not published by Fermat himself, but by his

son after his death. S. Fermat tells us in the preface that this

publication of Fermat's notes to Diophantus
3 was part of an

attempt to collect together from his letters and elsewhere his

contributions to mathematics. The "Doctrinae Analyticae In-

uentum nouum" is a collection made by Jacobus de Billy
4

1 Deinde Latinum damus tibi Diophantum ex Xilandri versione accuratissime castigata,

in qua duo potissimum nos praestitisse scias velim, nam et deprauata correximus, hiantesque

passim lacunas repleuimus : et quae subobscure, vel ambigue fuerat interpretatus Xilander,

dilucidius exposuimus; fateor tamen, inde tantam inductam esse mutationem, vt prope-
modum aequius sit versionem istam nobis quam Xilandro tribuere. Si quis autem potius
ad eum pertinere contendat, quod eius verba, quatenus Diophanto fraudi non erant,

mordicus retinuimus, per me licet.'' -
i. 323.

3 Now published in CEuvres de Fermat by P. Tannery and C. Henry, Vol. I. (1891),

pp. 289-342 (the Latin original), and Vol. in. (1896), pp. 241-274 (French translation).
4 Now published in CEuvres de Fermat, in. 323-398 (French translation). De

Billy had already published in 1660 a book under the title Diophantus geometra sive

opus contextum ex arithmetica et geometria.
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from various letters which Fermat sent to him at different times.

The notes upon Diophantus' problems, which his son hopes will

prove of value very much more than commensurate with their

bulk, were (he says) collected from the margin of his copy of

Diophantus. From their brevity they were obviously intended

for the benefit of experts
1
,
or even perhaps solely for Fermat's

own, he being a man who preferred the pleasure which he had

in the work itself to any reputation which it might bring

him. Fermat never cared to publish his investigations, but was

always perfectly ready, as we see from his letters, to acquaint

his friends and contemporaries with his results. Of the notes

themselves this is not the place to speak in detail. This edition

of Diophantus is rendered valuable only by the additions in it

due to Fermat; for the rest it is a mere reprint of that of 1621.

So far as the Greek text is concerned, it is very much inferior

to the first edition. There is a far greater number of misprints,

omissions of words, confusions of numerals
; and, most serious of

all, the brackets which Bachet inserted in the edition of 1621 to

mark the insertion of words in the text are in this later edition

altogether omitted. These imperfections have been already noticed

by Nesselmann 2
. Thus the reprinted edition of 1670 is untrust-

worthy as regards the text.

In 1585 Simon Stevin published a French version of the first

four books of Diophantus
3
. It was based on Xylander and was

a free reproduction, not a translation, Stevin himself observing that

the MS. used by Xylander was so full of mistakes that the text of

1 Lectori Seneuolo, p. iii :
" Doctis tantum quibus pauca sufficiunt, harum obserua-

tionum auctor scribebat, vel potius ipse sibi scribens, his studiis exerceri malebat quam
gloriari; adeo autem ille ab omni ostentatione alienus erat, vt nee lucubrationes suas

typis mandari curauerit, et suorum quandoque responsorum autographa nullo seruato

exemplari petentibus vitro miserit ; norunt scilicet plerique celeberrimorum huius saeculi

Geometrarum, quam libenter ille et quanta humanitate, sua iis inuenta patefecerit."
2 "Was dieser Abdruck an ausserer Eleganz gewonnen hat (denn die Bachet'sche

Ausgabe ist mit ausserst unangenehmen, namentlich Griechischen Lettern gedruckt), das

hat sie an innerm Werthe in Bezug auf den Text verloren. Sie ist nicht bloss voller

Druckfehler in einzelnen Worten und Zeichen (z. B. durchgehends JT statt ~^, 900)

sondern auch ganze Zeilen sind ausgelassen oder doppelt gedruckt (z. B. ill. 12 eine

Zeile doppelt, iv. 25 eine doppelt und gleich hinterher eine ausgelassen, IV. 52 eine

doppelt, v. ii eine ausgelassen, desgleichen v. 14, 15, 33, VI. 8, 13 und so weiter), die

Zahlen verstiimmelt, was aber das Aergste ist, die Bachet'schen kritischen Zeichen sind

fast uberall, die Klammer durchgangig weggefallen, so dass diese Ausgabe als Text des

Diophant vollig unbrauchbar geworden ist," p. 283.
3 Included in L'Arithmelique de Simon Stevin de Bruges. ..A Leyde, De I'lmprimerie

de Christophle Plantin, cio . ID . LXXXV.
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Diophantus could not be given word for word 1
. Albert Girard

added the fifth and sixth books to the four, and this complete
version appeared in i625

2
.

In 1810 was published an excellent translation (with additions)

of the fragment upon Polygonal Numbers by Poselger : Diophantus
von Alexandrien iiber die Polygonal-Zahlen. Uebersetzt mit Zusdtzen

von F. Th. Poselger. Leipzig, 1810.

In 1822 Otto Schulz, professor in Berlin, published a very

meritorious German translation with notes : Diophantus von

Alexandria arithmetische Aufgaben nebst dessen Schrift iiber die

Polygon-Zahlen. Aus dent Griechischen ilbersetzt und mit An-

merkungen begleitet von Otto Schulz, Professor am Berlinisch-

Colnischen Gymnasium zum grauen Kloster. Berlin, 1822. In der

Schlesingerschen Buck- tind Mtisikhandlung. The work of Poselger

just mentioned was with the consent of its author incorporated in

Schulz's edition along with his own translation and notes upon
the larger treatise, the Arithmetica. According to Nesselmann

Schulz was not a mathematician by profession ;
he produced,

however, a thoroughly useful edition, with notes chiefly upon
the matter of Diophantus and not on the text (with the exception

of a very few emendations) : notes which, almost invariably correct,

help much to understand the author. Schulz's translation is based

upon the edition of Bachet's text published in 1670.

Another German translation was published by G. Wertheim

in 1 890 : Die A rithmetik und die Schrift fiber Polygonalzahlen des

Diophantus von Alexandria. Ubersetzt tmd mit Anmerkungen

begleitet von G. Wertheim (Teubner). Though it appeared before

the issue of Tannery's definitive text, it is an excellent translation,

the translator being thoroughly equipped for his task
;

it is valuable

also as containing Fermat's notes, also translated into German, with

a large number of other notes by the translator elucidating both

Diophantus and Fermat, and generalising a number of the problems

which, with very few exceptions, receive only particular solutions

from Diophantus himself. Wertheim has also included 46 epigram-

problems from the Greek anthology and the enunciation of the

famous Cattle-Problem attributed to Archimedes.

1 See Bibliotheca Mathematica Vii3 , 1906-7, p. 59.
2 UArithmetiqiu de Simon Stevin de Brvges, Reiteue, corrigee& augmenlee dephisieurs

traictez et annotation par Albert Girard Samielois Mathematicien. A Leide, de

I'lmprimerie des Elzeviers cio . 10 . cxxv. Reproduced in the edition of Les (Euvres

Mathematiques de Simon Stevin de Bruges. Par Albert Girard. Leyde, cio . 10 . cxxxiv.
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No description is necessary of the latest edition, by Tannery,
in which we at last have a definitive Greek text of Diophantus
with the ancient commentaries, etc., Diophanti Alexandrini opera

omnia cum Graecis commentaries. Edidit et Latine interpretatus

est Paulus Tannery (Teubner). The first volume (1893) contains

the text of Diophantus, the second (1895) the Pseudepigrapha,
Testimonia veterum, Pachymeres' paraphrase, Planudes' com-

mentary, various ancient scholia, etc., and 38 arithmetical epigrams
in the original Greek with scholia. Any further edition will neces-

sarily be based on Tannery, who has added all that is required in

the shape of introductions, etc.

Lastly we hear of other works on Diophantus which, if they
were ever written, are lost or remain unpublished. First, we find

it asserted by Vossius (as some have understood him) that the

Englishman John Pell wrote an unpublished Commentary upon

Diophantus. John Pell (1611-1685) was at one time professor

of mathematics at Amsterdam and gave lectures there on Dio-

phantus, but what Vossius says about his commentary may
well be only a recommendation to undertake a commentary,
rather than a historical assertion of its completion. Secondly,

Schulz states in his preface that he had lately found a note in

Schmeisser's Orthodidaktik der Mathematik that Hofrath Kausler

by command of the Russian Academy prepared an edition of

Diophantus
1
. This seems however to be a misapprehension on the

part of Schulz. Kausler is probably referring, not to a translation

of Diophantus, but to his memoir of 1798 published in Nova Acta

Acad. PetropoL XI. p. 125, which might easily be described as an

Ausarbeitung of Diophantus' work.

I find a statement in the New American Cyclopaedia (New York,
D. Appleton and Company), Vol. vi., that " a complete translation

of his (Diophantus') works into English was made by the late

Miss Abigail Lousada, but has not been published."

1 The whole passage of Schmeisser is : "Die mechanische, geistlose Behandlung der

Algebra ist ins besondere von Herrn Hofrath Kausler stark geriigt worden. In der

Vorrede zu seiner Ausgabe des Uflakerschen Exempelbuths beginnt er so :
'
Seit mehreren

Jahren arbeitete ich fur die Russisch-Kaiserliche Akademie der Wissenschaften Diophants
unsterbliches Werk iiber die Arithmetik ans, und fand darin einen solchen Schatz von

den feinsten, scharfsinnigsten algebraischen Auflosungen, dass mir die mechanische,

geistlose Methode der neuen Algebra rait jedem Tage mehr ekelte u.s.w.'
"

(p. 33).



CHAPTER III

NOTATION AND DEFINITIONS OF DIOPHANTUS

As it is my intention, for the sake of brevity and per-

spicuity, to make use of the modern algebraical notation in giving

my account of Diophantus' problems and general methods, it is

necessary to describe once for all the machinery which our author

uses for working out the solutions of his problems, or the notation

by which he expresses such relations as would be represented in

our time by algebraical equations, and, in particular, to illustrate

the extent to which he is able to manipulate unknown quantities.

Apart, however, from the necessity of such a description for the

proper and adequate comprehension of Diophantus, the general

question of the historical development of algebraical notation

possesses great intrinsic interest. Into the general history of this

subject I cannot enter in this essay, my object being the elucidation

of Diophantus ;
I shall accordingly in general confine myself to an

account of his notation solely, except in so far as it is interesting

to compare it with the corresponding notation of his editors and

(in certain cases) that of other writers, as, for example, certain of

the early Arabian algebraists.
-

First, as to the representation of an unknown quantity. The

unknown quantity, which Diophantus defines as containing TrXrjQos

/jiovdBcov dopio-rov, i.e. an undefined number of units (def. 2), is

denoted throughout by what was printed in the editions before

Tannery's as the Greek letter 9 with an accent, thus <?',
or in the

form 9. This symbol in verbal description he calls o dpi&fj,6<>,
" the

number," i.e.
t by implication, the numberpar excellence ofthe problem

in question. In the cases where the symbol is used to denote in-

flected forms, e.g., the accusative singular or the dative plural, the

terminations which would have been added to the stem of the full

word dpiOpos were printed above the symbol 9 in the manner of an
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exponent, thus ?
xv

(for apidpov, as T
VV

for TOJ/), s
5
,
the symbol being

in addition doubled in the plural cases, thus 55*,"w *** ??""> 5?**, f r

dpiO/jLOi K.r.e. When the symbol is used in practice, the coefficient

is expressed by putting the required Greek numeral immediately
after it, thus s<?' ta corresponds to I ix, 9' a to x and so on.

Tannery discusses the question whether in the archetype (a) of

the MSS. this duplication of the sign for the plural and this

addition of the terminations of the various cases really occurred 1
.

He observes that any one accustomed to reading Greek MSS. will

admit that the marks of cases are common in the later MSS. but

are very frequently omitted in the more ancient. Further, the

practice of duplicating a sign to express the plural is more ancient

than that of adding the case-terminations. Tannery concludes that

the case-terminations (like the final syllables of abbreviations used

for other words) were very generally, if not always, wanting in the

archetype (a). If this seems inconsistent with the regularity with

which they appear in our MSS., it has to be remembered that A
and B

l do not represent the archetype (a) but the readings of a, the

copyist of which probably took it upon himself to substitute the

full word for the sign or to add the case-terminations. Tannery's
main argument is the frequent occurrence of instances where the

wrong case-ending has been added, e.g., the nominative for the

genitive ;
the conclusion is also confirmed by instances in which

different cases of the word dpi0/j,6<;, e.g. dpiffpov, dptffpov, and even

aptBpAv written in full are put by mistake for xai owing to the

resemblance between the common abbreviation for icai and the

sign for dpiOpo*;, and of course in such cases the abbreviation would

not have had the endings. As regards the duplication of the sign
for the plural, Tannery admits that this was the practice of the

Byzantines ;
but he considers that the evidence is against sup-

posing that Diophantus duplicated the sign ;
he does not do so

with any other of his technical abbreviations, those for p.ovds,

Svvapis, etc. Accordingly in his text of Diophantus Tannery has

omitted the case-endings and written the single sign for dpi0/j,6<;

whether in the singular or in the plural ;
in his second volume,

however, containing the scholia, etc., he has retained the duplicated

sign.

On the assumption that the sign was the Greek final sigma, it

was natural that Nesselmann should explain it by the supposition

1

Dioph. II. pp. xxxiv-xxxix.

H. D. 3
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that Diophantus, in search of a convenient symbol for his unknown

quantity, would select the only letter of the Greek alphabet which

was not already appropriated as a numeral 1
. But he made the

acute observation 2
that, as the symbol occurred in many places (of

course in Bachet's text) for dpi0/j,6<t used in the ordinary un-

technical sense, and was therefore, as it appeared, not exclusively

used to designate the unknown quantity, the technical apropos, it

must after all be more of the nature of an abbreviation than an

algebraical symbol like our x. It is true that this uncertainty in

the use of the sign in the MSS. is put an end to by Tannery, who
uses it for the technical dpiO/j>6f alone and writes the untechnical

dpiQjjLos in full
; but, even if Diophantus' practice was as strict as

this, I do not think this argues any difference in the nature of the

abbreviation. There is also a doubt whether the final sigma, ?,

was developed as distinct from the form a- so early as the date of

the MSS. of Diophantus, or rather so early as the first copy of his

work, if the author himself really gave the explanation of the sign

as found in our text of his second definition. These considerations

suggested to me that the sign was not the final sigma at all, but

must be explained in some other way. I had to look for con-

firmation of this to the precise shape of the sign as found in extant

MSS. The only MS. which I had the opportunity of inspecting

personally was the MS. of the first ten problems of Diophantus in

the Bodleian
;
but here I found strong confirmation of my view in

the fact that the sign appeared as '^, quite different in shape from,

and much larger than, the final sigma at the end of words in the

same MS. (There is in the Oxford MS. the same irregularity as

was pointed out by Nesselmann in the use of the sign sometimes

for the technical, and sometimes for the untechnical, aptfyio?
3
.)

But I found evidence that the sign appeared elsewhere in some-

what different forms. Thus Rodet in the Journal Asiatique of

January, 1878, quoted certain passages from Diophantus for the

purpose of comparison with the algebra of Muhammad b. Musa
al-Khuwarazml. Rodet says he copied these passages exactly
from Bachet's MS.

; but, while he generally gives the sign as the

final sigma, he has in one case iji]
01 for dpiffftoi. In this last case

1 Nesselmann, pp. 290-1.
2 ibid. pp. 300-1.

3 An extreme case is lraa TO rov devrtpov'^o api8/j,ovtt>6$, where the sign (contrary to

what would be expected) means the untechnical <i/H0/u6s, and the technical is written in

full. Also in the definition 6 5e nydef rotiruv T&V Idiw/A&TUv KTriffd/j.evos...apit)[j.bs KaXerrai

the word dpify^s is itself denoted by the symbol, showing that the word and the symbol
are absolutely convertible.
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Bachet himself reads 9?
ot

. But the same form ijip which Rodet

gives is actually found in three places in Bachet's own edition,

(i) In his note to IV. 3 he gives a reading from his own MS. which

he has corrected in his own text and in which the signs ija and

LJLjr) occur, evidently meaning dpi0/j,o<;
a and dpiO^ol rj, though the

sign should have been that for dpid^oarov (= \\x). (2) In the text of

IV. 1 3 there is a sentence (marked by Bachet as interpolated) which

contains the expression LjLjr, where the context again shows that

i]q is for dpiOfjuoL (3) At the beginning of V. 9 there is a difficulty

in the text, and Bachet notes that his MS. has prjre 6 8nr\a<ria)v

avrov
LJ
where a Vatican MS. reads dpid^ov (Xylander notes that

his MS. had in this place fjurjre 6 BnrXaalcov avrov dp po a ...).

It is thus clear that the MS. (Paris. 2379) which Bachet used

sometimes has the sign for dpiQ/jios in a form which is at least

sufficiently like
i|

to be taken for it. Tannery states that the form

of the sign found in the Madrid MS. (A) is
tj,

while B1 has it in a

form ($) nearly approaching Bachet's reproduction of it.

It appeared also that the use of the sign, or something like

it, was not confined to MSS. of Diophantus ;
on reference to

Gardthausen, Griechische Palaeographie, I found under the head
"
hieroglyphisch-conventionell

"
an abbreviation 9, 99 for aptfytd?,

-oL, which is given as occurring in the Bodleian MS. of Euclid

(D'Orville 301) of the 9th century. Similarly Lehmann 1 notes as

a sign for dpi0/j,6<;
found in that MS. a curved line similar to that

which was used as an abbreviation for icai. He adds that the

ending is placed above it and the sign is doubled for the plural.

Lehmann's facsimile is like the form given by Gardthausen, but has

the angle a little more rounded. The form
iji|

ot above mentioned

is also given by Lehmann, with the remark that it seems to be

only a modification of the other. Again, from the critical notes to

Heiberg's texts of the Arenarius of Archimedes it is clear that the

sign for dpidpos occurred several times in the MSS. in a form

approximating to that of the final sigma, and that there was the

usual confusion caused by the similarity of the signs for dpidpbs

and teal
2

. In Hultsch's edition of Heron, similarly, the critical

notes to the Geodaesia show that one MS. had an abbreviation for

1 Lehmann, Die tachygraphischen Abkiirzungen der griechischen Handschriften, 1880,

p. 107 :
" Von Sigeln, welchen ich auch anderwarts begegnet bin, sincl zu nennen dpi6/j.6s,

das in der Oxforder Euclidhandschrift mit einer der Note xal ahnlichen Schlangenlinie

bezeichnet wird."
2 Cf. Heiberg, Quaestiones Archimedean, pp. 172, 174, 187, 188, 191, 192; Archimedis

opera omnia, II., pp. 268 sqq.

32
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oi in various forms with the case-endings superposed ;
some-

times they resembled the letter
,
sometimes p, sometimes O and

once J
. Lastly, the sign for dpiBfjios resembling the final sigma

evidently appeared in a MS. of Theon of Smyrna 2
.

All these facts strongly support the assumption that the sign

was a mere tachygraphic abbreviation and not an algebraical

symbol like our x, though discharging much the same function.

The next question is, what is its origin ? The facts (i) that the

sign has the breathing prefixed in the Bodleian MS., which writes

'^-7 for dptOfjios, and (2) that in one place Xylander's MS. read dp

tor the full word, suggested to me the question whether it could

be a contraction of the first two letters of dpidpos ; and, on con-

sideration, this seemed to me quite possible when I found a

contraction for ap given by Gardthausen, namely cf. It is easy to

see that a simplification of this in different ways would readily

produce signs like the different forms shown above. This then

was the hypothesis which I put forward twenty-five years ago, and

which I still hold to be the easiest and best explanation. Two
alternatives are possible, (i) Diophantus may not have made the

contraction himself. In that case I suppose the sign to be a cur-

sive contraction made by scribes
;
and I conceive it to have come

about through the intermediate form <

p. The loss of the downward

stroke, or of the loop, would produce a close approximation to

the forms which we know. (2) Diophantus may have used a sign

approximately, if not exactly, like that which we find in the MSS.
For it is from a papyrus of 154 A.D., in writing of the class which

Gardthausen calls the "Majuskelcursive," that the contraction c?f> for

the two letters is taken. The great advantage of my hypothesis is

that it makes the sign for aptfytov exactly parallel to those for the

powers of the unknown, e.g., J
r

for Svvafjus and KY
for /cu/8o?, and

o

to that for the unit fjwvds which is denoted by M, with the sole

difference that the letters coalesce into one instead of being

written separately.

Tannery's views on the subject are, I think, not very con-

sistent, and certainly they do not commend themselves to me. He
seems to suggest that the sign is the ancient letter Koppa, perhaps

slightly modified
;
he first says that the sign in Diophantus is

peculiar to him and that, although the word dpi6p,b<i is very often

1 Heron, ed. Hultsch, pp. 146, 148, 149, 150.
2 Theon of Smyrna, ed. Hiller, p. 56, critical notes.
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represented in mathematical MSS. by an abbreviation, it has much
oftener the form $ or something similar, closely resembling the

ancient Koppa. In the next sentence he seems to say that " on

the contrary the Diophantine abbreviation is an inverted di-

gamma
"

; yet lower down he says that the copyist of a (copied

from the archetype a) got the form
i] by simplifying the more

complicated Koppa. And, just before the last remark, he has

stated that in the archetype a the form must have been 5 or very
like it, as is shown by the confusion with the sign for ical. (If this

is so, it can hardly have been peculiar to Diophantus, seeing that

the same confusion occurs fairly often in the MSS. of other

authors, as above shown.) I think the last consideration (the con-

fusion with ical} is very much against the Koppa-hypothesis ; and,

in any case, it seems to me very unlikely that a sign would be

used by Diophantus for the unknown which was already appro-

priated to the number 90. And I confess I am unable to see in

the sign any resemblance to an inverted digamma.
Hultsch 1

regards it as not impossible that Diophantus may
have adopted one of the signs used by the Egyptians for their

unknown quantity hau, which, if turned round from left to right,

would give V; but here again I see no particular resemblance.

Prof. D'Arcy Thompson
2 has a suggestion that the sign might be

the first letter of o-p6<?, a heap. But, apart from the fact that the

final sigma (<?) is not that first letter, there is no trace whatever

in Diophantus of such a use of the word o-twpo? ; and, when

Pachymeres
3
speaks of a number being crwpeia /j,ovdSa>v, he means

no more than the 7r\fj0os fAovdSwv which he is explaining : his

words have no connexion with the Egyptian hau.

Notwithstanding that the sign is not the final sigma, I shall

not hesitate to use 9 for it in the sequel, for convenience of

printing. Tannery prints it rather differently as =>.

We pass to the notation which Diophantus used to express the

different powers of the unknown quantity, corresponding to x*, x3
,

and so on. He calls the square of the unknown quantity 8vz>a/u<?,

and denotes it by the abbreviation J
r

. The word Svvapts,

literally
"
power," is constantly used in Greek mathematics for

1 Art. Diophantus in Pauly-Wissowa's Keal-Encyclopadie der classischen Altertums-

wissensehaften .

2 Transactions of the Royal Society of Edinburgh, Vol. xxxvm. (1896), pp. 607-9.
3
Dioph. n. p. 78, 4. Cf. lamblichus, ed. Pistelli, p. 7, 7 ; 34, 3 ; 81, 14, where <rw/>efa

is similarly used to elucidate TrXTjflos.
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square*. With Diophantus, however, it is not any square, but only

the square of the unknown
;
where he speaks of any particular

square number, it is Terpdytovos dpid/Mos. The higher powers of the

unknown quantity which Diophantus makes use of he calls Kvftos,

&vva,f*,o8vva/j,t<;, Swa/jLotcvfios, KvftoKvftos, corresponding respectively

to Xs
, x*, Xs

,
x6

. Beyond the sixth power he does not go, having

no occasion for higher powers in the solutions of his problems. For

these powers he uses the abbreviations KY
, A Y

A, AKY
,
KYK re-

spectively. There is a difference between Diophantus' use of the word *

8vva/j,i<; and of the complete words for the third and higher powers,

namely that the latter are not always restricted like 8iW/u<? to powers
of the unknown, but may denote powers of ordinary known num-

bers as well. This is no doubt owing to the fact that, while there

are two words Bvva/j,i<; and rerpdyaivo^ which both signify
"
square,"

there is only one word for a third power, namely /cu/3o?. It is

important, however, to observe that the abbreviations KY
, A

Y
A,

AKY
,
KY

K, are, like Svvafw and A Y
, only used to denote powers

of the unknown. The coefficients of the different powers of the

unknown, like that of the unknown itself, are expressed by the

addition of the Greek letters denoting numerals, e.g., AKV
*r cor-

responds to 26x*. Thus in Diophantus' system of notation the signs

A Y and the rest represent not merely the exponent of a power like

the 2 in xz
,
but the whole expression x*. There is no obvious

connexion between the symbol A Y and the symbol 9 of which it is

the square, as there is between x* and x, and in this lies the great

inconvenience of the notation. But upon this notation no advance

was made by Xylander, or even by Bachet and Fermat. They wrote

A7
(which was short for Numerus) for the 9 of Diophantus, Q (Quad-

ratus) for J r
, C (Cubus) for KY

,
so that we find, for example,

I Q + 5^= 24, corresponding to x"- + $x = 24. Other symbols were

however used even before the publication of Xylander's Diophantus,

e.g. in Bombelli's Algebra. Bombelli denotes the unknown and its

powers by the symbols -i 1, ,
and so on. But it is certain that

up to this time (1572) the common symbols had been R (Radix
or Res), Z (Zensus, i.e. square), C (Cubus). Apparently the first

important step towards x*, x*, etc., was taken by Vieta (1540

1 In Plato we have SiW/uj used for a square number (Titnaeus, 31) and also

(TTieaetetus , 147 D) for a square root of a number which is not a complete square, i.e. for

a surd ; but the commonest use is in geometry, in the form 8vvA.fj.tL,
"
in square," e.g. "AB

is dw6/j.ei double of C" means "AB2 = 2.5C 2."
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1603), who wrote Aq, Ac, Aqq, etc. (abbreviated for A quadratus
and so on) for the powers of A. This system, besides showing the

con .exion between the different powers, has the infinite advantage
that by means of it we can use in one and the same solution any
number of unknown quantities. This is absolutely impossible with

the notation used by Diophantus and the earlier algebraists.

Diophantus in fact never uses more than one unknown quantity in

the solution of a problem, namely the dpi6/j.6<; or <?.

Diophantus has no symbol for the operation of multiplication ;

it is rendered unnecessary by the fact that his coefficients are all

definite numbers or fractions, and the results are simply put down
without any preliminary step which would call for the use of a

symbol. On the ground that Diophantus uses only numerical

expressions for coefficients instead of general symbols, it might
occur to a superficial observer that there must be a great want

of generality in his methods, and that his problems, being solved

with reference to particular numbers only, would possess the

attraction of a clever puzzle rather than any more general interest.

The answer to this is that, in the first place, it was absolutely

impossible that Diophantus should have used any other than

numerical coefficients, for the reason that the available symbols of

notation were already employed, the letters of the Greek alphabet

always doing duty as numerals, with the exception of the final 9.

In the second place, it is not the case that the use of none but

numerical coefficients makes his solutions any the less general.

This will be clearly seen when I come to give an account of his

problems and methods.

Next as to Diophantus' expressions for the operations of

addition and subtraction. For the former no symbol at all is

used: it is expressed by mere juxtaposition, thus KYa^ Y
^y^

corresponds to x* + \yc- + $x. In this expression, however, there

is no absolute term, and the addition of a simple numeral, as

for instance /8, directly after e, the coefficient of ?, would cause

confusion. This fact makes it necessary to have some expression

to distinguish the absolute term from the variable terms. For this

purpose Diophantus uses the word /u,ovaSe<?, or units, and denotes
o

them after his usual manner by the abbreviation M. The number

of units is expressed as a coefficient. Thus corresponding to

the expression Xs + \y? + $x+2 we should find in Diophantus

KY
a J

r
t79eJ/. As Bachet uses the sign + for addition, he
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has no occasion for a distinct symbol to mark an absolute term.

He accordingly writes iC+ i^Q+^N+2. It is worth observing,

however, that the Italians do use a symbol in this case, namely N
(Numero), the first power of the unknown being with them R
(Radice). Cossali 1 makes an interesting comparison between the

terms used by Diophantus for the successive powers of the unknown

and those employed by the Italians after their instructors, the

Arabians. He observes that Fra Luca (Paciuolo), Tartaglia, and

Cardano begin their scale of powers from the power o, not from the

power i, as does Diophantus, and he compares the scales thus :

Scala Diofantea. Scala Araba.

i. Numero.. .il Noto.

x \. Numero... 1' Ignoto. i. Cosa, Radice, Lato.

X* i. Podesta. 3. Censo.

x3 3. Cubo. 4. Cubo.

x* 4. Podesta-Podesta. 5. Censo di Censo.

xs
5. Podesta-Cubo. 6. Relate i.

x6 6. Cubo-Cubo. 7. Censo di Cubo, o Cubo di Censo.

xi 7 8. Relate 2.

Xs 8 9. Censo di Censo di Censo.

x9
9 10. Cubo di Cubo.

and so on.* So far, however, as this is meant to be a comparison
between Diophantus and the early Arabian algebraists themselves

(as the title
"
Scala Araba" would seem to imply), there appears to

be no reason why Cossali should not have placed some term to

express Diophantus' /ioi>Se? in the same line with Numero in the

Arabian scale, and moved the numbers i, 2, 3, etc. one place

upward^ in the first scale, or downwards in the second. As

Diophantus does not go beyond the sixth power, the last three

places in the first scale are left blank. An examination of these

two scales will show also that the evolution of the successive

powers differs in the two systems. The Diophantine terms for

them are based on the addition of exponents, the Arabic on

1 Upon Wallis' comparison of the Diophantine with the Arabian scale Cossali

remarks: "ma egli non ha riflettuto a due altre differenze tra le scale medesime. La

prima si e, che laddove Diofanto denomina con singolarita Numero il nuinero ignoto,

denominando Monade il numero dato di comparazione : gli antichi italiani degli arabi

seguaci denominano questo il Numero ; e Radice, o Lato, o Cosa il numero sconosciuto.

La seconda e, che Diofanto comincia la scala dal numero ignoto ; e Fra Luca, Tartaglia,

Cardano la incominciano dal numero noto. Ecco le due scale di rincontro, onde meglio
risaltino all' occhio le differenze loro ", I. p. 195.
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their multiplication^. Thus the "cube-cube" means in Diophantus
x?, while the Italian and Arabian system uses the expression

" cube

of cube
" and applies it to x9

. The first system may (says Cossali)

be described as the method of representing each power by the

product of the two lesser powers which are the nearest to it, the

method of multiplication; the second the metliod of elevation, i.e. the

method which forms by the process of squaring and cubing all

powers which can be so formed, as the 4th, 6th, 8th, 9th, etc.

The intermediate powers which cannot be so formed are called

in Italian Relati. Thus the fifth power is Relate i, x1
is

Relato 2, x10 is Censo di Relato i, x" is Relato 3, and so on.

Another name for the Relati in use among European algebraists in

the 1 6th and I7th centuries was sursolida, with the variants super-

solida and surdesolida.

It is interesting to compare with these systems the Egyptian
method described by Psellus 2

. The next power after the fourth

(8vi>a/ioSiW/u9), i.e. x6
,
the Egyptians called " the first undescribed

"

((1X0709 here apparently meaning that of which no account can

be given), because it is neither a square nor a cube
; alternatively

they called it
" the fifth number," corresponding to the fifth power

of x. The sixth power they apparently called " cube-cube
"

;
but

the seventh was " the second undescribed
"
(0X0709 Sevrepos), as

being the product of the square and the "
first undescribed," or,

alternatively, the "seventh number." The eighth power was the

"quadruple-square" (rerpaTrXfj 8ui>a/u9), the ninth the "extended

cube
"

(/eu/8o9 eeXt*T09). Thus the "
first undescribed

"
and the

"second undescribed" correspond to "Relato i" and "Relato 2"
respectively, but the "quadruple-square" exhibits the additive

principle.

For subtraction Diophantus uses a symbol. His full term for

negation or wanting is Xenjrt9, corresponding to inrap%i<; which

denotes the opposite. The symbol used to denote it in the MSS.,

and corresponding to our for minus, is (Def. 9 KOI 7-^9 Xetye<9
eXXi7T9 Kara) vevov, A)

" an inverted with the top

1 This statement of Cossali's needs qualification however. There is at least one Arabian

algebraist, al-Karkhi (died probably about 1029), the author of the Fakkri, who uses the

Diophantine system of powers of the unknown depending on the addition of exponents.

Al-Karkhl, namely, expresses all powers of the unknown above the third by means of

mat, his term for the square, and kab, his term for the cube of the unknown, as follows.

The fourth power is with him mdl mal, the fifth mal kab, the sixth kab ka'b, the seventh

mdl mal kab, the eighth mdl kab kab, the ninth kab kab kab, and so on. Among the

Italians too there was an exception, Leonardo of Pisa, who proceeded on the additive

principle (Bibliotheea Mathematica, vis, 1905-6, p. 310).
2
Dioph. H. p. 37-38.
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shortened, /ft." As Diophantus uses no distinct sign for +, it

is clearly necessary, in order to avoid confusion, that all the

negative terms in an expression should be placed together
after all the positive terms. And so in fact he does place them.

Thus corresponding to x3
$*? + &tr i, Diophantus would write

KY a 9 T; A^l
1

e Ma. With respect to this curious sign, given in

the MSS. as T and described as an inverted truncated M*", I believe

that I was the first to suggest that it could not be what it is

represented as being. Even when, as in Bachet's edition, the

sign was printed as ^ I could not believe that Diophantus used

so fantastic a sign for minus as an inverted truncated ty. In

the first place, an inverted ^ seems too far-fetched
;
to one who

was looking for a symbol to express minus many others more
natural and less fantastic than jp> must have suggested themselves.

Secondly, given that Diophantus used an inverted M/", why should he

truncate it ? Surely that must have been unnecessary ;
we could

hardly have expected it unless, without it, confusion was likely

to arise; but ./p. could not well have been confused with anything.
This very truncation itself appears to throw doubt on the description

of the symbol as we find it in the MS. I concluded that the con-

ception of this symbol as an inverted truncated M* was a mistake,

and that the description of it as such is not Diophantus' description,

but an explanation by a scribe of a symbol which he did not

understand 1
. I believe that the true explanation is the following.

Diophantus here took the same course as in the case of the other

symbols which we have discussed (those for apiOftos, Svvafjus, etc.).

As in those cases he took for his abbreviation the first letter of the

word with such an addition as would make confusion with numbers

impossible (namely the second letter of the word, which in each of

the cases happens to come later in the alphabet than the corre-

sponding first letter), so, in seeking an abbreviation for
A,et-\Ja<?

and cognate inflected forms developed from \ITT, he began by

taking the initial letter of the word. The uncial 2 form is A.

Clearly A by itself would not serve his purpose, since it denotes

a number. Therefore an addition is necessary. The second letter

is E, but AE is equally a number. The second letter of the stem

1 I am not even sure that the description can be made to mean all that it is intended

to mean. AXiTr^s scarcely seems to be sufficiently precise. Might it not be applied to

/]\ with any part cut off, and not only the top ?

2
I adhere to the uncial form above for clearness' sake. If Diophantus used the

"
Majuskelcursive

"
form, the explanation will equally apply, the difference of form being

for our purpose negligible.



NOTATION AND DEFINITIONS OF DIOPHANTUS 43

\ITT is I, but Al is open to objection when so written. Hence

Diophantus placed the I inside the A, thus, A. Of the possibility

of this I entertain no doubt, because there are undoubted cases

of combination, even in uncial writing, of two letters into one sign.

I would refer in particular to X, which is an uncial abbreviation for

TAAANTON. Now this sign, A, is an inverted and truncated W
(written in the uncial form, y) ;

and we can, on this assumption,

easily account for the explanation of the sign for minus which is

given in the text.

The above suggestion, made by me twenty-five years ago,

seems to be distinctly supported by what Tannery says of the form

in which the sign appears in the MSS. 1 Thus he remarks (i) that

the sign in the MSS. is often made to lean to the right so that it

resembles the letter Lambda, (2) that Planudes certainly wrote fc as

if he meant to write the first letter of Xen/ret, and (3) that the

letter A appears twice in A where it seems to mean XotTro?. Yet

in his edition of Diophantus Tannery did not adopt my explanation

or even mention it, but explained the sign as being in reality

adapted from the old letter Sampi (~>>), the objection to which

suggestion is the same as that to which the identification of <? with

Koppa is open, namely that ~^ represented the number 900, as ?

represented 90. Tannery however afterwards 2 saw reason to

abandon his suggestion that the symbol was originally an archaic

form of the Greek Sampi rather than "un monogramme se

rattachant a la racine de Xen/rt?." The occasion for this change
of view was furnished by the appearance of the same sign in the

critical notes to Schone's edition of the Metrica of Heron 3
,
which

led Tannery to re-examine the evidence of the MSS. of Diophantus
as to the sign and as to the exact word or words which it re-

presented in different places, as well as to search for any similar

expressions denoting subtraction which might occur in the works

of other Greek mathematicians. In the MSS. of Diophantus,
when the sign is resolved by writing a full word instead of it,

it is generally resolved into Xen/ret, the dative of Xen/rt<? ;
in such

cases the only grammatical possibility is to construct it with the

genitive case of the quantity subtracted, the meaning then being
"with the wanting, or deduction, of ...". But the best MS. (A)

1
Dioph. n. p. xli.

- Bibliotheca Mathematica v3 , 1904-5, pp. 5-8.
3 Heronis Alexandrini opera, Vol. in., 1903, pp, 156, 8, 10. The MS. reading is

t'd', the meaning of which is 74
-
TV
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has in some places the nominative Xetyv 9, while in others it has the

symbol instead of parts of the verb \ei-7reiv, namely \nr(i)v or

XeiS/ra? and once even XITTOJO-I
;
hence we may conclude that in the

cases where A and B^ have \etyei followed by the accusative (which
is impossible grammatically) the sign was wrongly resolved, and

the full word should have been a participle or other part of the

verb \eliretv governing the accusative. The question therefore

arises whether Diophantus himself used the dative \efyet at all

or whether it was introduced into the MSS. later. Certain it is

that the use is foreign to Classical Greek
; but, even if it began

with Diophantus, it did not finally hold the field before the time of

Planudes. No evidence for it can be found in Greek mathe-

maticians before Diophantus. Ptolemy has in two places Xenjrai/

and \ei7rovaav respectively, followed by the accusative, and in

one case TO airo rrjs FA \ei<l>9ev VTTO TOV aVo -n)9 Zf (where the

meaning is ZP- FA2

). Consequently we cannot suppose that the

sign where it occurs in the Metrica of Heron represents the dative

Xenjr; it must rather stand for a participle, active or passive.

Tannery suggests that the full expression in that passage was

fjiovdSwv oB \ei<f)0evTo$ re(r<TapaKaiSKdrov, the participle being

passive and the construction being the genitive absolute
;
but I

think a perhaps better alternative would be povaSmv 08 \en/rao-<wz/

reo-a-apaKaiSeicaTov, where the active participle would govern
the accusative case of the term subtracted. From all this we

may infer that the sign had no exclusive reference to the sub-

stantive \enjrt9, still less to the dative case of that substantive, but

was a conventional abbreviation associated with the root of the

verb \ei7reiv. In these circumstances I think I may now fairly

claim Tannery as, substantially, a convert to my view of the

nature of the sfgn.

For division it often happens that no symbol is necessary,
i.e. in the cases where the divisor divides the dividend without

a remainder. In other cases the quotient has to be expressed
as a fraction, whether the divisor is a specific number or contains

the variable. The case of division comes then under that of

fractions.

Fractions are represented in different ways according as they are

submultiples (fractions with unity as numerator) or not. In the

case of submultiples the Greeks did not write the numerator, but

only the denominator, distinguishing the submultiple from the

cardinal number itself by affixing a certain sign. In more recent
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MSS. a double accent was used for this purpose: thus 7" = ^.

Diophantus follows this plan in the hypothesis and analysis of his

problems, though in the solutions he seems to have written the

numerator a and assimilated the notation to that used for other

fractions. The sign, however, added to the cardinal number to

express the submultiple takes somewhat different forms in A :

sometimes it is a simple accent, sometimes more elaborate, as /"

above the letter and to the right, or actually forming a continuation

of the numeral sign, e.g. fr' = ^. Tannery adopts as the genuine
mark in Diophantus the affix x in place of the accent : thus 7

X =
3.

For he writes L '
as being most suitable for the time of Diophantus,

though A has <~*/, sometimes without the dot.

Of the other class of fractions (numerator not unity) f stands by

itself, having a peculiar sign of its own
; curiously enough it occurs

only four times in Diophantus. A has a sign for it which was

confused with that for dpidpos in one place ; Tannery judges from

the Greek mathematical papyrus of Achmlm 1 that its original form

was <y ;
he himself writes in his text the common form iff'. In the

rare cases where the first hand in the oldest MS. (A) has fractions

as such with numerator and denominator written in full, the

denominator is written above the numerator. Tannery therefore

adopts, in his text, this way of writing fractions, separating the

numerator and denominator by a horizontal line: thus pica
=

^.

PACT?

It is however better to omit the horizontal line (cf. p in Kenyon

Papyri II. No. cclxv. 40; also the fractions in Schone's edition

of Heron's Metrica). Once we find in the same MS. (A) in the first

hand the form ie
s = 1

f-.
In this latter method of writing fractions

the denominator is written as we write exponents ;
and this is the

method adopted by Planudes and by Bachet in his edition.

Another alternative is to write the numerator first, and then the

denominator after it in the same line, marking the denominator with

the submultiple sign in some form
;
thus jB' would mean

;
this is

the most convenient method for purposes of printing. Or the de-

nominator may be written as an abbreviation for the ordinal number,
and the case-termination may be added higher up ; e.g. v K>f

v = 50

twenty-thirds. But the denominators are nearly always omitted

1 Published by Baillet in Memoires publih par Its Membres de la Mission archeologique

franfaise au Caire, T. Ix, Fascicule i, pp. 1-88. Paris, 1892.
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altogether in the first hand of A
;
in the first two Books B^ and the

second hand ofA give the denominator in the place in which we write

an exponent, following the method of Planudes
;

in the last four

Books both MSS. almost invariably omit the denominator. In

some cases the omission is not unnatural, i.e. where the denominator

has once been given, and it is almost superfluous to repeat it

in other fractions immediately following which have the same

denominator
;
in other cases it was probably omitted because the

superposed denominator was taken by the copyist to be an inter-

linear scholium. A few examples of fractions from Diophantus

may be added :

(v. 9) ;

A ff>
'

=
(IV. 16) ; pKa-XS =

(IV. 39) ;

(V . 2) .

152
V

Diophantus however often expresses fractions by putting eV

or popiov between the numerator and denominator, i.e. he
r

says one number divided by another. Cf. Mpiv . g^irb poplov__ r_
*r . ,/8/3/iS

= 1507984/262144 (IV. 28), where of course M =

(tens of thousands); (3 . ,e% ev ^opiw picfS .
/
aice= 25600/1221025

(v. 22). As we said, the most orthodox way of writing a sub-

multiple was to omit the numerator (unity) and use the denominator

with a distinguishing sign attached, e.g. rx or r' = . But in his

solutions Diophantus often uses the form applicable to fractions

W i

other than submultiples ; e.g. he writes a for - (IV. 28).

Numbers partly integral and partly fractional, where the

fraction is a submultiple or the sum of submultiples, are written

much as we write them, the fraction simply following the integer ;

e.g. a 7
X =

i^ ;
in the Lemma to V. 8 we have ft L

'

r' = 2 \ % or 2,
where f is decomposed into submultiples as in Heron. Cf. also

(m. ii)roZ.Vx =37oi TV.

Before leaving the subject of numerical notation, it may be

convenient to refer to the method of writing large numbers.
r

Myriads (tens of thousands) are expressed by M, myriads to the
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second power by MM or, in words, Bevrepa fj.vpia<f. The de-

nominator 1 87474560 in V. 8 would thus be written /j,opiov

a teal [ivpi(i8(i)v TrpcaTfav fij^n^ icalM ,<>, and the fraction

131299224/1629586560 would be written Bevrepa pvpias a

M 0(TK?) fioptov Bevrepfav pupidSow if

M~r&\
But there is another kind of fraction, besides the purely

numerical one, which is continually occurring in the Arithmetica,

such fractions namely as involve the unknown quantity in some
form or other in their denominators. The simplest case is that in

which the denominator is merely a power of the unknown, 9.

Concerning fractions of this kind Diophantus says (Def. 3) :

" As
fractions named after numbers have similar names to those of the

numbers themselves (thus a third is named from three, a fourth

from four), so the fractions homonymous with the numbers just

defined are called after them
;

thus from
a/>ifyto<? we name

the fraction dpidfioarov \t. ijx from x\, TO Swapoarov from

is, TO KvftoffTov from >ti>/8o?, TO BwafioBwapoa-rov from

,
TO Bwa/AOKV/Soa'Tov from SvvafjLoicvftos, and TO

from KV&OHV&OS. And every such fraction shall

have, above the sign for the homonymous number, a line to

indicate the species." Thus we find, for example, IV. 3, ?
x

17 cor-

responding to 8/x and, IV. 15, ?
x Xe for 35/4:. Cf. Jrxor for 250^.

Where the denominator is a compound expression involving the

unknown and its powers, Diophantus uses the expedient which he

often adopts with numerical fractions when the numerators and

denominators are large numbers, namely the insertion of ev popiy
or /jiopiov between the expressions for the numerator and de-

nominator. Thus in VI. 12 we have

= (6ar
2 +

and in VI. 14

For to-o?, equal, connecting the two sides of an equation, the

sign in the archetype seems to have been i
ff but copyists intro-

1 Hultsch, he. tit.
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duced a sign which was sometimes confused with the sign i|
for

dpidpos ;
this was no doubt the same abbreviation

Lj
as that shown

(with terminations of cases added above) in the list given at

the end of Codex Parisinus 2360 (Archimedes) of contractions

found in the "
very ancient

" MS. from which it was copied and

which was at one time the property of Georgius Valla 1
.

Diophantus evidently put down his equations in the ordinary
course of writing, i.e. they were written straight on, as are the

steps in the propositions of Euclid, and not put in separate lines for

each step in the process of simplification. In the scholia of

Maximus Planudes however we find conspectuses of the problems
with steps in separate lines which, except for the slightly more

cumbrous notation, make the work scarcely more difficult to follow

than it is in our notation 2
. Though in the MSS. we have the

abbreviation t
"

to denote equality, Bachet makes no use of any

symbol for the purpose in his Latin translation. He uses

throughout the full Latin word. It is interesting however to observe

that in the notes to his earlier translation (1575) Xylander had

already used a symbol to denote equality, namely ||,
two short

vertical parallel lines. Thus we find, for example (p. 76),

which we should express by x*1 + 12 =x*+ 6x+ 9.

Now that we have described in detail Diophantus' method of

expressing algebraical quantities and relations, it is clear that it is

essentially different in its character from the modern notation.

While in modern times signs and symbols have been developed

1

Heiberg, Quaestiones Archimedeae, p. 115.
2 One instance will suffice. On the left Planudes has abbreviations for the words

showing the nature of the steps or the operations they involve, e.g. &r0. = ftcflecns (setting
-

out), rerp. = rer/scrywpwy^s (squaring), wuvO. ff^vOecrts (adding), a<f>.
=

d.<j>alpfffis (subtrac-

tion), pep.
=

fj.epiffiJ.6s (division), OTT. = virap%is (resulting fact).

Dioph. I. 28.

Planudes.
"Modern equivalent.

(K&.

rerp.

atvd. AYp(J.ff I" M ^?

A Ya

[Given numbers] 20, 208

Put for the numbers .*+ 10, 10 - *

Squaring, we have *2+2a*+ 100,

#2 + 100-20*.

Adding, 2jr2 +2OO= 2o8.

Subtracting, 2.*
2 =8.

Dividing, Jf
2= 4.

Result: [the numbers are] 12, 8.
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which have no intrinsic relationship to the things which they

represent, but depend for their use upon convention, the case

is quite different in Diophantus, where algebraic notation takes

the form of mere abbreviation of words which are considered as

pronounced or implied.

In order to show in what place, in respect of systems of

algebraic notation, Diophantus stands, Nesselmann observes that

we can, as regards the form of exposition of algebraic operations
and equations, distinguish three historical stages of development,
well marked and easily discernible, (i) The first stage Nessel-

mann represents by the name Rhetorical Algebra or "reckoning by
complete words." The characteristic of this stage is the absolute

want of all symbols, the whole of the calculation being carried on

by means of complete words, and forming in fact continuous prose.

As representatives of this first stage Nesselmann mentions lambli-

chus (of whose algebraical work he quotes a specimen in his fifth

chapter) "and all Arabian and Persian algebraists who are at

present known." In their works we find no vestige of algebraic

symbols; the same may be said of the oldest Italian algebraists

and their followers, and among them Regiomontanus. (2) The
second stage Nesselmann proposes to call the Syncopated A Igebra.

This stage is essentially rJielorical, and therein like the first in

its treatment of questions ;
but we now find for often-recurring

operations and quantities certain abbreviational symbols. To
this stage belong Diophantus and, after him, all the later

Europeans until about the middle of the seventeenth century

(with the exception of Vieta, who was the first to establish,

under the name of Logistica speciosa, as distinct from Logistica

numerosa, a regular system of reckoning with letters denoting

magnitudes and not numbers only). (3) To the third stage

Nesselmann gives the name Symbolic Algebra, which uses a com-

plete system of notation by signs having no visible connexion

with the words or things which they represent, a complete language
of symbols, which supplants entirely the r/ietorical system, it being

possible to work out a solution without using a single word of the

ordinary written language, with the exception (for clearness' sake)

of a connecting word or two here and there, and so on 1
. Neither

1 It may be convenient to note here the beginnings of some of our ordinary algebraical

symbols. The signs + and - first appeared in print in Johann Widman's arithmetic

(1489), where however they are scarcely used as regular symbols of operation ; next they
are found in the Rechenbuch of Henricus Grammateus (Schreiber), written in 1518 but

perhaps not published till 15.21, and then regularly in Stifel's Arithmetica Integra (1544)
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is it the Europeans from the middle of the seventeenth century

onwards who were the first to use symbolic forms of Algebra.

In this they were anticipated by the Indians.

Nesselmann illustrates these three stages by three examples,

quoting word for word the solution of a quadratic equation

by Muhammad b. Musa as an example of the first stage, and

the solution of a problem from Diophantus as representing the

second.

First Stage, Example from Muhammad b. Musa (ed. Rosen,

p. 5). "A square and ten of its roots are equal to nine and thirty

dirhems, that is, if you add ten roots to one square, the sum is equal

to nine and thirty. The solution is as follows. Take half the number

of roots, that is in this case five; then multiply this by itself, and

the result is five and twenty. Add this to the nine and thirty,

which gives sixty-four; take the square root, or eight, and subtract

from it half the number of roots, namely five, and there remain

three: this is the root of the square which was required, and the

square itself is nine1
."

Here we observe that not even are symbols used for numbers,

so that this example is even more "rhetorical" than the work of

lamblichus who does use the Greek symbols for his numbers.

as well as in his edition of RudolfFs Coss (1553). Vieta (1540-1603) has, in addition,

= for ~. Robert Recorde (1510-1558) had already in his Algebra (The Whetstone of

Witte, 1557) used =(but with much longer lines) to denote equality (" bicause noe.2.

thynges, can be moare equalle"). Harriot (1560-1621) denoted multiplication by a dot,

and also by mere juxtaposition of letters; Stifel (1487-1567) had however already

expressed the product of two magnitudes by the juxtaposition of the two letters represent-

ing them. Oughtred (1574-1660) used the sign x for multiplication. Harriot also

introduced the signs > and < for greater and less respectively, -f- for division is found

in Rahn's Algebra (1659). Descartes introduced in his Geometry (1637) our method of

writing powers, as a3
, a* etc. (except a2 , for which he wrote aa) ; but this notation was

practically anticipated by Pierre Herigone (Cours matktmatique, 1634), who wrote ai, a$,

04, etc., and the idea is even to be found in the Rechenbuch of Grammateus above

mentioned, where the successive powers of the unknown are denoted by pri, se, ter, etc.

The use of x for the unknown quantity began with Descartes, who first used 2, then y, and

then x for this purpose, showing that he intentionally chose his unknowns from the last

letters of the alphabet. ^/ for the square root is traceable to Rudolff, with whom it had

only two strokes, the first (down) stroke being short, and the other relatively long.
1 Thus Muhammad b. Musa states in words the following solution.

^+10^ = 39,

xz + 10^+25=64;
therefore x + 5

=
8,
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Second Stage. As an example of Diophantus I give a trans-

lation word for word of II. 8. So as to make the symbols correspond

exactly I use 5 (Square) for J
r

(Svvafus), N (Number) for 9, U

(Units) for M (^o^aSe?).

"To divide the proposed square into two squares. Let it be

proposed then to divide 16 into two squares. And let the first be

supposed to be \S\ therefore the second will be 16 U 1 5. Thus
16 U i 5 must be equal to a square. I form the square from any
number of N's minus as many (7's as there are in the side of

1 6 /'s. Suppose this to be 2/V ^U. Thus the square itself will

be 4S i6U- \6N. These are equal to i6U- I S. Add to each

the negative term (77 Xen/rt?, the deficiency) and take likes from

likes. Thus 56" are equal to i6N, and the N is 16 fifths. One

[square] will be ^, and the other l

-gg, and the sum of the two

makes up
4^, or \6U, and each of the two is a square."

Of the third stage any exemplification is unnecessary.
To the form of Diophantus' notation is due the fact that he

is unable to introduce into his solutions more than one unknown

quantity. This limitation has made his procedure often very dif-

ferent from our modern work. In the first place we can begin
with any number of unknown quantities denoted by different

symbols, and eliminate all of them but one by gradual steps in the

course of the work
; Diophantus on the other hand has to perform

all his eliminations beforehand, as a preliminary to the actual

work, by expressing every quantity which occurs in the problem
in terms of only one unknown. This is the case in the great

majority of questions of the first Book, which involve the solu-

tion of determinate simultaneous equations of the first degree
with two, three, or four variables; all these Diophantus expresses
in terms of one unknown, and then proceeds to find it from a

simple equation. Secondly, however, this limitation affects much of

Diophantus' work injuriously; for, when he handles problems which

are by nature indeterminate and would lead with our notation to an

indeterminate equation containing two or three unknowns, he is

compelled by limitation of notation to assume for one or other of

these some particular number arbitrarily chosen, the effect of the

assumption being to make the problem a determinate one. How-

ever, it is but fair to say that Diophantus, in assigning an arbitrary

value to a quantity, is careful to tell us so, saying, "for such and

such a quantity we put any number whatever, say such and such a

42
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number." Thus it can hardly be said that there is (as a rule) any
loss of generality. We may say, then, that in general Diophantus is

obliged to express all his unknowns in terms, or as functions, of

one variable. He compels our admiration by the clever devices

by which he contrives so to express them in terms of his single

unknown, 9, as to satisfy by that very expression of them all

conditions of the problem except one, which then enables us to

complete the solution by determining the value of 9. Another

consequence of Diophantus' want of other symbols besides 9 to

express more variables than one is that, when (as often happens)
it is necessary in the course of a problem to work out a subsidiary

problem in order to obtain the coefficients etc. in the functions of 9

which express the numbers to be found, the unknown quantity
which it is the object of the new subsidiary problem to find is also

in its turn denoted by the same symbol 9 ;
hence we often have

in the same problem the same variable 9 used with two different

meanings. This is an obvious inconvenience and might lead to

confusion in the mind of a careless reader. Again we find two

cases, II. 28 and 29, where for the proper working-out of the

problem two unknowns are imperatively necessary. We should of

course use x andjp; but Diophantus calls the first 9 as usual; the

second, for want of a term, he agrees to call "one unit" i.e. I.

Then, later, having completed the part of the solution necessary to

find 9, he substitutes its value, and uses 9 over again to denote

what he had originally called
"

I
"

the second variable and so

finds it. This is the most curious case of all, and the way in which

Diophantus, after having worked with this
"

I
"
along with other

numerals, is yet able to put his finger upon the particular place

where it has passed to, so as to substitute 9 for it, is very remark-

able. This could only be possible in particular cases such as those

which I have mentioned; but, even here; it seems scarcely possible

now to work out the problem by using x and I for the variables

as originally taken by Diophantus without falling into confusion.

Perhaps, however, in working out the problems before writing them

down as we have them Diophantus may have given the "
I
"
which

stood for a variable some mark by which he could recognise it

and distinguish it from other numbers.

Diophantus will have in his solutions no numbers whatever

except "rational" numbers; and in pursuance of this restriction he

excludes not only surds and imaginary quantities, but also negative

quantities. Of a negative quantity per se, i.e. without some positive
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quantity to subtract it from, Diophantus had apparently no con-

ception. Such equations then as lead to surd, imaginary, or

negative roots he regards as useless for his purpose: the solution

is in these cases aSui/aro?, impossible. So we find him (v. 2)

describing the equation 4 = 4^+20 as aroTros, absurd, because it

would give x = ^. Diophantus makes it his object throughout
to obtain solutions in rational numbers, and we find him frequently

giving, as a preliminary, the conditions which must be satisfied in

order to secure a result rational in his sense of the word. In the

great majority of cases, when Diophantus arrives in the course of

a solution at an equation which would give an irrational result, he

retraces his steps and finds out how his equation has arisen, and

how he may, by altering the previous work, substitute for it

another which shall give a rational result. This gives rise, in

general, to a subsidiary problem the solution of which ensures

a rational result for the problem itself. Though, however, Dio-

phantus has no notation for a surd, and does not admit surd

results, it is scarcely true to say that he makes no use of quadratic

equations which lead to such results. Thus, for example, in V. 30
he solves such an equation so far as to be able to see to what

integers the solution would approximate most nearly.



CHAPTER IV

DIOPHANTUS' METHODS OF SOLUTION

BEFORE I give an account in detail of the different methods

which Diophantus employs for the solution of his problems, so far

as they can be classified, it is worth while to quote some remarks

which Hankel has made in his account of Diophantus
1

. Hankel,

writing with his usual brilliancy, says in the place referred to, "The

reader will now be desirous to become acquainted with the classes

of indeterminate problems which Diophantus treats of, and with

his methods of solution. As regards the first point, we must observe

that included in the 130 (or so) indeterminate problems, of which

Diophantus treats in his great work, there are over 50 different

classes of problems, strung together on no recognisable principle

of grouping, except that the solution of the earlier problems facili-

tates that of the later. The first Book is confined to determinate

algebraic equations; Books II. to v. contain for the most part

indeterminate problems, in which expressions involving in the first

or second degree two or more variables are to be made squares or

cubes. Lastly, Book VI. is concerned with right-angled triangles

regarded purely arithmetically, in which some linear or quadratic
function of the sides is to be made a square or a cube. That is all

that we can pronounce about this varied series of problems without

exhibiting singly each of the fifty classes. Almost more different

in kind than the problems are their solutions, and we are completely
unable to give an even tolerably exhaustive review of the different

turns which his procedure takes. Of more general comprehensive
methods there is in our author no trace discoverable : every

question requires a quite special method, which often will not

serve even for the most closely allied problems. It is on that

1 Zur Geschichte der Mathematik in Alterthum und Mittelaller, Leipzig, 1874,

pp. 164-5.
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account difficult for a modern mathematician even after studying
100 Diophantine solutions to solve the icist problem; and if we
have made the attempt, and after some vain endeavours read

Diophantus' own solution, we shall be astonished to see how

suddenly he leaves the broad high-road, dashes into a side-path

and with a quick turn reaches the goal, often enough a goal with

reaching which we should not be content; we expected to have

to climb a toilsome path, but to be rewarded at the end by an

extensive view; instead of which our guide leads by narrow,

strange, but smooth ways to a small eminence; he has finished!

He lacks the calm and concentrated energy for a deep plunge
into a single important problem ;

and in this way the reader also

hurries with inward unrest from problem to problem, as in a

game of riddles, without being able to enjoy the individual one.

Diophantus dazzles more than he delights. He is in a wonderful

measure shrewd, clever, quick-sighted, indefatigable, but does not

penetrate thoroughly or deeply into the root of the matter. As
his problems seem framed in obedience to no obvious scientific

necessity, but often only for the sake of the solution, the solution

itself also lacks completeness and deeper signification. He is a

brilliant performer in the art of indeterminate analysis invented by
him, but the science has nevertheless been indebted, at least directly,

to this brilliant genius for few methods, because he was deficient

in the speculative thought which sees in the True more than the

Correct. That is the general impression which I have derived from

a thorough and repeated study of Diophantus' arithmetic."

It might be inferred from these remarks of Hankel that

Diophantus' object was less to teach methods than to obtain a

multitude of mere results. On the other hand Nesselmann

observes 1 that Diophantus, while using (as he must) specific

numbers for numbers which are "
given

"
or have to be arbitrarily

assumed, always makes it clear how by varying our initial as-

sumptions we can obtain any number of particular solutions of

the problem, showing "that his whole attention is directed to

the explanation of the method, to which end numerical examples

only serve as means"; this is proved by his frequently stopping

short, when the method has been made sufficiently clear, and

the remainder of the work is mere straightforward calculation.

The truth seems to be that there is as much in the shape of general

1
Algebra der Griechen, pp. 308-9.
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methods to be found in Diophantus as his notation and the nature

of the subject admitted of. On this point I can quote no better

authority than Euler, who says
1

:

"
Diophantus himself, it is true,

gives only the most special solutions of all the questions which he

treats, and he is generally content with indicating numbers which

furnish one single solution. But it must not be supposed that his

method was restricted to these very special solutions. In his

time the use of letters to denote undetermined numbers was not

yet established, and consequently the more general solutions which

we are now enabled to give by means of such notation could not

be expected from him. Nevertheless, the actual methods which he

uses for solving any of his problems are as general as those which

are in use today; nay, we are obliged to admit that there is

hardly any method yet invented in this kind of analysis of which

there are not sufficiently distinct traces to be discovered in Dio-

phantus."

In his 8th chapter, entitled "Diophantus' treatment of equations
2
,"

Nesselmann gives an account of Diophantus' solutions of (i) Deter-

minate, (2) Indeterminate equations, classified according to their

kind. In chapter 9, entitled "Diophantus' methods of solution 3
,"

he classifies these " methods "
as follows 4

: (i)
" The adroit assump-

tion of unknowns," (2) "Method of reckoning backwards and

auxiliary questions," (3) "Use of the symbol for the unknown in

different significations," (4) "Method of Limits," (5) "Solution by
mere reflection," (6) "Solution in general expressions," (7) "Arbi-

trary determinations and assumptions," (8) "Use of the right-

angled triangle."

At the end of chapter 8 Nesselmann observes that it is not

his solutions of equations that we have to wonder at, but the art,

amounting to virtuosity, which enabled Diophantus to avoid such

equations as he could not technically solve. We look (says Nessel-

mann) with astonishment at his operations, when he reduces the

most difficult problems by some surprising turn to a quite simple

1 Nffvi Commentarii Academiae Petropolitanae, 1756-7, Vol. VI. (1761), p. 1 55 = Com-
mentationes arithmtticae collectae (ed. Fuss), 1849, I. p. 193.

2 "
Diophant's Behandlung der Gleichungen."

3 "
Diophant's Auflbsungsmethoden."

4
(r) "Die geschickte Annahme der Unbekannten," (i)

" Methode der Zuriick-

rechnung und Nebenaufgabe," (3)
" Gebrauch des Symbols fur die Unbekannte in

verschiedenen Bedeutungen," (4) "Methode der Grenzen," (5)
"
Auflosung durch blosse

Reflexion," (6) "Auflosung in allgemeinen Ausdriicken," (7)
"
Willkiihrliche Bestim-

mungen und Annahmen," (8) "Gebrauch des rechtwinkligen Dreiecks."
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equation. Then, when in the pth chapter Nesselmann passes to the

"methods," he prefaces it by saying: "To give a complete picture

of Diophantus' methods in all their variety would mean nothing else

than copying his book outright. The individual characteristics of

almost every problem give him occasion to try upon it a peculiar

procedure or found upon it an artifice which cannot be applied to

any other problem.... Meanwhile, though it may be impossible to

exhibit all his methods in any short space, yet I will try to describe

some operations which occur more often or are particularly re-

markable for their elegance, and (where possible) to bring out

the underlying scientific principle by a general exposition and by
a suitable grouping of similar cases under common aspects or

characters." Now the possibility of giving a satisfactory account of

the methods of Diophantus must depend largely upon the meaning
we attach to the word "method." Nesselmann's arrangement seems

to me to be faulty inasmuch as (i) he has treated Diophantus'
solutions of equations, which certainly proceeded on fixed rules,

and therefore by "method" separately from what he calls "methods

of solution," thereby making it appear as though he did not

look upon the "treatment of equations" as "methods"; (2) the

classification of the "Methods of solution" seems unsatisfactory.

Some of the latter can hardly be said to be methods of solution at

all; thus the third,
" Use of the symbol for the unknown in different

significations," might be more justly described as a "hindrance to

the solution"; it is an inconvenience to which Diophantus was

subjected owing to the want of notation. -Indeed, on the as-

sumption of the eight "methods," as Nesselmann describes them,

it is really not surprising that no complete account of them

could be given without copying the whole book. To take the

first, "the adroit assumption of unknowns." Supposing that a

number of essentially different problems are proposed, the differences

make a different choice of an unknown in each case absolutely

necessary. That being so, how could a rule be given for all cases?

The best that can be done is to give a number of typical instances.

Precisely the same remark applies to "methods" (2), (5), (6), (7).

The case of (4),
" Method of Limits," is different

;
here we have

a
" method

"
in the true sense of the term, Le. in the sense of an

instrument for solution. And accordingly in this case the method

can be exhibited, as I hope to show later on; (8) also deserves

to some extent the name of a
" method."
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In one particular case, Diophantus formally states a method or

rule
;
this is his rule for solving what he calls a "

double-equation,"

and will be found in II. 1 1, where such an equation appears for the

first time. Apart from this, we do not find in Diophantus' work

statements of method put generally as book-work to be applied to

examples. Thus we do not find the separate rules and limitations

for the solution of different kinds of equations systematically

arranged, but we have to seek them out laboriously from the

whole of his work, gathering scattered indications here and there,

and to formulate them in the best way that we can.

I shall now attempt to give a short account of those methods

running through Diophantus which admit of general statement.

For the reasons which I have stated, my arrangement will be

different from that of Nesselmann
;

I shall omit some of the heads

in his classification of "methods of solution"; and, in accordance

with his remark that these "methods" can only be adequately
described by a transcription of the entire work, I shall leave them

to be gathered from a perusal of my reproduction of Diophantus'
book.

I shall begin my account with

I. DIOPHANTUS' TREATMENT OF EQUATIONS.

This subject falls naturally into two divisions: (A) Determinate

equations of different degrees, (B) Indeterminate equations.

(A) Determinate equations.

Diophantus was able without difficulty to solve determinate

equations of the first and second degrees; of a cubic equation we
find in his Arithmetica only one example, and that is a very

special case. The solution of simple equations we may pass over;

we have then to consider Diophantus' methods of solution in the

case of (i) Pure equations, (2) Adfected, or mixed, quadratics.

(i) Pure determinate equations.

By pure equations I mean those equations which contain only
one power of the unknown, whatever the degree. The solution is

effected in the same way whatever the exponent of the term in the
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unknown; and Diophantus treats pure equations of any degree

as if they were simple equations of the first degree.

He gives a general rule for this case without regard to the

degree
1

: "If a problem leads to an equation in which any terms

are equal to the same terms but have different coefficients, we must

take like from like on both sides, until we get one term equal to

one term. But, if there are on one side or on both sides any negative

terms, the deficient terms must be added on both sides until all the

terms on both sides are positive. Then we must take like from like

until one term is left on each side." After these operations have

been performed, the equation is reduced to the form Axm =B and

is considered solved. The cases which occur in Diophantus are

cases in which the value of x is found to be a rational number,

integral or fractional. Diophantus only recognises one value of x
which satisfies this equation; thus, if m is even, he gives only the

positive value, excluding a negative value as "impossible." In the

same way, when an equation can be reduced in degree by dividing

throughout by any power of x, the possible values, x=o, thus

arising are not taken into account. Thus an equation of the form

x*= ax, which is of common occurrence in the earlier part of the

book, is taken to be merely equivalent to the simple equation x=a.

It may be observed that the greater proportion of the problems
in Book I. are such that more than one unknown quantity is sought.

Now, when there are two unknowns and two conditions, both

unknowns can easily be expressed in terms of one symbol. But,

when there are three or four quantities to be found, this reduction

is much more difficult, and Diophantus shows great adroitness in

effecting it: the ultimate result being that it is only necessary
to solve a simple equation with one unknown quantity.

(2) Mixed quadratic equations.

After the remarks in Def. 1 1 upon the reduction of equations
until we have one term equal to another term, Diophantus
adds 2

: "But we will show you afterwards how, in the case also

when two terms are left equal to a single term, such an equation
can be solved." That is to say, he promises to explain the

solution of a mixed quadratic equation. In the Arithmetica,

as we possess the book, this promise is not fulfilled. The first

1 Def. ii.

*
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indications we have on the subject are a number of cases in which

the equation is given, and the solution written down, or stated to

be rational, without any work being shown. Thus

(IV. 22) x* = 4JF 4, therefore x = 2
;

(IV. 31) 325^ = 3^+18, therefore x = $fc or &;

(vi. 6) 84*2 + 7.^
=

7, whence x=\;

(vi. 7) 84*2 - 7-*-= 7, hence .* =
;

(VI. 9) 630.^2
- fix = 6, therefore .ar = -^ ;

and (vi. 8) 630.^2 + 73^ = 6, and x is rational.

These examples, though proving that Diophantus had somehow

arrived at the result, are not in themselves sufficient to show that

he was necessarily acquainted with a regular method for the

solution of quadratics ;
these solutions might (though their variety

makes it somewhat unlikely) have been obtained by mere trial.

That, however, Diophantus' solutions of mixed quadratics were not

merely empirical is shown by instances in V. 30. In this problem
he shows that he could approximate to the root in cases where it is

not "
rational." As this is an important point, I give the substance

of the passage in question: "This is not generally possible unless

we contrive to make x. > | (x- 60) and < \ (x^ 60). Let then

x* 60 be > 5*, but x* 60 < $>x. Since then xz -6o> $x, let 60 be

added to both sides, so that & > $x + 60, or x*=$x + some number

> 60; therefore x must not be less than n." In like manner

Diophantus concludes that "x* = Sx+ some number less than 60
;

therefore x must be found to be not greater than 1 2."

Now, solving for the positive roots of these two equations, we

have

x > 2 (5 + V265) and x < 4 + ^76,

or x> 10*6394. .. and x< 127177....

It is clear that x may be < 1 1 or > 1 2, and therefore Dio-

phantus' limits are not strictly accurate. As however it was

doubtless his object to find integral limits, the limits u and 12

are those which are obviously adapted for his purpose, and are

a fortiori safe.

In the above equations the other roots obtained by prefixing

the negative sign to the radical are negative and therefore would

be of no use to Diophantus. In other cases of the kind occurring
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in Book V. the equations have both roots positive, and we have to

consider why Diophantus took no account of the smaller roots in

those cases.

We will take first the equations in V. 10 where the inequalities

to be satisfied are

17 ........................ (i).

19 ........................ (2).

Now, if a, /8 be the roots of the equation

x- px + q = o (p, q both positive),

and if a > fi, then

(a) in order that x"2- px + q may be > o

we must have x> a or < /3,

and (b) in order that x* px + q may be < o

we must have x < a and > /9.

(i) The roots of the equation

J2X+ 17 =o

36 + V 1007 , 6773... ,4-26...
are ----

; that is,
' ' J and -

;

17 17 17

and, in order that ijx* 72^+ 17 may be.< o, we must have

(2) The roots of the equation

19=0

that
. 66-577... and

19 19 19

and, in order that ic^tr
2

J2X + 19 may be > o, we must have

x> 66^77^ Qr< 5-422^
19 19

Diophantus says that x must not be greater than f| or less than

ff . These are again doubtless intended to be a fortiori limits
;

but ff should have been f, and the more correct way of stating the

case would be to say that, if x is not greater than ff and not less

than \\, the given conditions are a fortiori satisfied.

Now consider what alternative (if any) could be obtained, on

Diophantus' principles, if we used the lesser positive roots of the
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equations. If, like Diophantus, we were to take a fortiori limits,

we should have to say
^< T

5gbut>^,
which is of course an impossibility. Therefore the smaller roots

are here useless from his point of view.

This is, however, not so in the case of another pair of in-

equalities, used later in V. 30 for finding an auxiliary x, namely

X* + 60 > 22X,

The roots of the equation

X* 22X + 6O = O

are ii + V6i
;
that is, i8'8i... and 3'i8...;

and the roots of the equation x* - 2<\x + 60 = o

are 12 + \/84; that is, 2ri6... and 2-83....

In order therefore to satisfy the above inequalities we must have

x> i8'8i ... or < 3'i8...,

and x< 2i'i6 ... but > 2 -

83.

Diophantus, taking a fortiori integral limits furnished by the

greater roots, says that x must not be less than 19 but must be

less than 21. But he could also have obtained from the smaller

roots an integral value of x satisfying the necessary conditions,

namely the value x = 3 ;
and this would have had the advantage

of giving a smaller value for the auxiliary x than that actually

taken, namely 2O 1
. Accordingly the question has been raised 2

whether we have not here, perhaps, a valid reason for believing

that Diophantus only knew of the existence of roots obtained by

using the positive sign with the radical, and was unaware of the

solution obtained by using the negative sign. But in truth we
can derive no certain knowledge on this point from Diophantus'
treatment of the particular equations in question. Thus, e.g., if he

chose to use the first of the two equations

17,

19,

for the purpose of obtaining an upper limit only, and the second

1 This is remarked by Loria (Le scienze esatte delP antica Grecia, V. p. 128).

But in fact, whether we take 20 or 3 as the value of the auxiliary unknown, we get

the same value for the original .r of the problem. For the original x has to be found

from x*-6o=(x-m)* where m is the auxiliary.*; and we obtain x= n whether we

put .r2 - 60= (.*- 2 o)
2 or x'2 -6o= (x-3)

2
.

2
Loria, op. cit. p. 129.
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for the purpose of obtaining a lower limit only, he could only use

the values obtained by using the positive sign. Similarly, if, with

the equations
x2 + 6o> 22.x,

x* + 60 < 24*,

he chose to use the first in order to find a lower limit only, and

the second in order to find an upper limit only, it was not open to

him to use the values corresponding to the negative sign
1
.

For my part, I find it difficult or impossible to believe that

Diophantus was unaware of the existence of two real roots in

such cases. The numerical solution of quadratic equations by the

Greeks immediately followed, if it did not precede, their geometrical

solution. We find the geometrical equivalent of the solution of

a quadratic assumed as early as the fifth century B.C., namely by

Hippocrates of Chios in his Quadrature of limes*, the algebraic form

of the particular equation being ^2 + Vf -ax= a'i. The complete

geometrical solution was given by Euclid in VI. 27-29: and the

construction of VI. 28 corresponds in fact to the negative sign

before the radical in the case of the particular equation there

solved, while a quite obvious and slight variation of the con-

struction would give the solution corresponding to the positive sign.

In VI. 29 the solution corresponds to the positive sign before the

radical; in the case of the equation there dealt with the other sign

would not give a "real" solution 3
. It is true that we do not find

the negative sign taken in Heron any more than in Diophantus,

though we find Heron 4
stating an approximate solution of the

equation
x ( 1 4 - x) = 6/2O/ 144,

without showing how he arrived at it; x is, he says, approximately

equal to 8. It is clear however that Heron already possessed
a scientific method of solution. Again, the author of the so-called

Geometry of Heron 5

practically states the solution of the equation

212

r A/ ( 154 X 212 + 841) 20
in the form x= v - --,

ii

1 Enestrom in Bibliotheca Mathematica IX3 , 1908-9, pp. 71-2.
2

Simplicius, Comment, in Aristot. Phys., ed. Diels, p. 64, t8; Rudio, Der Bericht

des Simplicius iiber die Quadraluren des Antiphon und des Hippokrates, 1907, p. 58,8-11.
3 The Thirteen Books of Euclid's Elements, Cambridge, 1908, Vol. II. pp. 257-267.
4
Heron, Metrica, ed. Schdne, pp. 148-151. The text has 8 as the approximate solu-

tion, but the correction is easy, as the inference immediately drawn is that \\-x=\.
6
Heron, ed. Hultsch, p. 133, 10-23. See M. Cantor, Geschichte der Math. I3 , p. 405.
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showing pretty clearly the rule followed after the equation had

been written in the form

121^ + 638^ = 212 x 154.

We cannot credit Diophantus with less than a similar uniform

method
; and, if he did not trouble to give two roots where both

were real, this seems quite explicable when it is remembered that he

did not write a text-book of algebra, and that his object through-

out is to obtain a single solution of his problems, not to multiply

solutions or to show how many can be found in each case.

In solving such an equation as

ax1 bx + c = o,

it is our modern practice to divide out by a in order to make the

first term a square. It does not appear that Diophantus divided

out by a\ rather he multiplied by a so as to bring the equation

into the form

cPx? abx + ac = o
;

then, solving, he found

and wrote the solution in the form

a

wherein his method corresponds to that of the Pseudo-Heron above

referred to.

From the rule given in Def. 1 1 for removing by means of addition

any negative terms on either side of an equation and taking equals

from equals (operations called by the Arabians aljabr and almukd-

bala) it is clear that, as a preliminary to solution, Diophantus so

arranged his equation that all the terms were positive. Thus,

from his point of view, there are three cases of mixed quadratic

equations.

Case I. Form mx?+px=q; the root is

m
according to Diophantus. An instance is afforded by vi. 6. Dio-

phantus namely arrives at the equation 6x* + yc = 7, which, if it is

to be of any service to his solution, should give a rational value

of x
; whereupon he says

" the square of half the coefficient 1 of x

1 For "
coefficient

"
Diophantus simply uses ir\rj6os, multitude or number ; thus

"number of dpiO/ioi
" = coeff. of x. The absolute term is described as the "units."
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together with the product of the absolute term and the coefficient

of x? must be a square number
;
but it is not," i.e. \jp + mq, or in

this case (|)
2 + 42, must be a square in order that the root may be

rational, which in this case it is not.

Case 2. Form mx* =px + q. Diophantus takes

An example is IV. 39, where 2^2 >6>+i8. Diophantus says:

"To solve this take the square of half the coefficient of x, i.e. 9, and

the product of the absolute term and the coefficient of x*, i.e. 36.

Adding, we have 45, the square root 1 of which is not 2 < 7. Add
half the coefficient of x, [and divide by the coefficient of x*\ ;

whence

x is not < 5." Here the form of the root is given completely ;
and

the whole operation of finding it is revealed. Cf. IV. 31, where

Diophantus remarks that the equation 5^r
2

=3^r+ 18 "is not rational.

But 5, the coefficient of x*, is a square plus I, and it is necessary

that this coefficient multiplied by the 18 units and then added to

the square of half the coefficient of x, namely 3, that is to say 2$,

shall make a square."

Case 3. Form mx* + q =px. Diophantus' root is

Cf. in V. 10 the equation already mentioned, 1 7^r
2 + 1 7

Diophantus says:
"
Multiply half the coefficient ofx into itself and

we have 1296; subtract the product of the coefficient of x* and the

absolute term, or 289. The remainder is 1007, the square root of

which is not 3 > 31. Add half the coefficient of x, and the result is

not > 67. Divide by the coefficient of ;r
2
,
and x is not > 67/17."

Here again we have the complete solution given. Cf. VI. 22, where,

having arrived at the equation 172^=336^+24, Diophantus
remarks that "this is not always possible, unless half the coefficient

of x multiplied into itself, minus the product of the coefficient of x*

and the units, makes a square."

For the purpose of comparison with Diophantus' solutions of

quadratic equations we may refer to a few of his solutions of

1 The "
square root" is with Diophantus TrXeupd, or "side."

2
7, though not accurate, is clearly the nearest integral limit which will serve the

purpose.
3 As before, the nearest integral limit.

H. D. 5
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(3) Simultaneous equations involving quadratics.

Under this heading come the pairs of equations

I use Greek letters to distinguish the numbers which the

problem requires us to find from the one unknown which Dio-

phantus uses and which I shall call x.

In the first two of the above problems, he chooses his x thus.

Let, he says,

Then it follows, by addition and subtraction, that

= a + x, r)
= a x.

Consequently, in I. 27,

7
=

(a + x) (a -x) = a>-x* = B,

and x is found from this "pure" quadratic equation.

If we eliminate from the original equations, we have

if
-

2ai) + B = o,

which we should solve by completing the square (a T/)
2
,
whence

(a-^^tf-B,
which is Diophantus' ultimate equation with a tj for x.

Thus Diophantus' method corresponds here again to the ordi-

nary method of solving a mixed quadratic, by which we make it

into a pure quadratic with a different x.

In I. 30 Diophantus puts + i\
=

2;r, and the solution proceeds
in the same way as in I. 27.

In I. 28 the resulting equation in x is

x?= 2 (a* +*2

) =B.

(4) Cubic equation.

There is no ground for supposing that Diophantus was acquainted

with the algebraical solution of a cubic equation. It is true that there

is one cubic equation to be found in the Arithmetica, but it is only
a very particular case. In VI. 17 the problem leads to the equation

x* + 2x + 3 = xs + ix - 3**
-

i,
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and Diophantus says simply "whence x is found to be 4." All

that can be said of this is that, if we write the equation in true

Diophantine fashion, so that all the terms are positive,

x3 + x = 4*
2 + 4.

This equation being clearly equivalent to

Diophantus no doubt detected the presence of the common factor

on both sides of the equation. The result of dividing by it

is x= 4, which is Diophantus' solution. Of the other two roots

x= v'( i) no account is taken, for the reason stated above.

It is not possible to judge from this example how far Dio-

phantus was acquainted with the solution of equations of a degree

higher than the second.

I pass now to the second general division of equations.

(B) Indeterminate equations.

As I have already stated, Diophantus does not, in his

Arithmetica as we have it, treat of indeterminate equations of the

first degree. Those examples in Book I. which would lead to such

equations are, by the arbitrary assumption of a specific value for

one of the required numbers, converted into determinate equations.

Nor is it likely that indeterminate equations of the first degree
were treated of in the lost Books. For, as Nesselmann observes,

while with indeterminate quadratic equations the object is to obtain

a rational result, the whole point in solving indeterminate simple

equations is to obtain a result in integral numbers. But Diophantus
does not exclude fractional solutions, and he has therefore only to

see that his results are positive, which is of course easy. Inde-

terminate equations of the first degree would therefore, from

Diophantus' point of view, have no particular significance. We
take therefore, as our first division, indeterminate equations of

the second degree.

(a) Indeterminate equations of tJte second degree.

The form in which these equations occur in Diophantus is

invariably this: one or two (but never more) functions of the

unknown quantity of the form Ax* + Bx + C or simpler forms

are to be made rational square numbers by finding a suitable

value for x. Thus the most general case is that of solving one or

two equations of the form Ax* + Bx + C=y*.
52
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(i) Single equation.

The single equation takes special forms when one or more of

the coefficients vanish or satisfy certain conditions. It will be well

to give in order the different forms as they can be identified in

Diophantus, premising that for "=j2 "
Diophantus simply uses the

formula ia~ov rerpayoovo),
"

is equal to a square," or iroiel rerpdytavov,
" makes a square."

I. Equations which can always be solved rationally. This is

the case when A or C or both vanish.

Form Bx=y*. Diophantus puts for j2

any arbitrary square

number, say m*. Then x = m*\B.
Ex. III. 5: 2x=yz

,y is assumed to be 16, and ;r= 8.

Form Bx+ C=y*. Diophantus puts for y* any square nP, and

x=(m*C)IB. He admits fractional values of x, only taking

care that they are "rational," i.e. rational and positive.

Ex. III. 6: 6x+ i =y* = 121, say, and x= 20.

Form Axz + Bx=y*. Diophantus substitutes for y any multiple

of x, as x; whence Ax + B =
^ x, the factor x disappearing and

the root x = o being neglected as usual. Thus x -

-^.

Exx. II. 21: 43?+ yc =jj/
2 = ($xf, say, and x = f .

II. 33 : i6x* + *]x =y* = ($x)*, say, and x = $.

2. Equations which can only be rationally solved if certain

conditions are fulfilled.

The cases occurring in Diophantus are the following.

Form Ax* + C=y*. This can be rationally solved according to

Diophantus

(a) When A is positive and a square, say
2
.

Thus cPx* + C=yi
. In this casef is put = (ax mf ;

therefore a^x- + C= (ax mf,

^-and x= +
," 2ma

(m and the doubtful sign being always assumed so as to give x

a positive value).

(/?) When C is positive and a square number, say c*.

Thus Axz + c* =_/. Here Diophantus puts y = (mx c) ;
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therefore Ax* + * = (mx cj,

2mc
and x = + -;

--
, .~ A m*

(7) When one solution, is known, any number of other

solutions can be found. This is enunciated in the Lemma to vi. 1 5

thus, though only for the case in which C is negative: "Given two

numbers, if, when one is multiplied by some square and the other

is subtracted from the product, the result is a square, then another

square also can be found, greater than the aforesaid square which

has the same property." It is curious that Diophantus does not

give a general enunciation of this proposition, inasmuch as not

only is it applicable to the cases + Ax* C=y3
, but also to the

general form Ax- + Bx + C=y\
Diophantus' method of finding other greater values ofx satisfy-

ing the equation Ax*- C=y* when one such value is known is as

follows.

Suppose that x is the value already known and that q is the

corresponding value of y.

Put ;r = jF + in the original expression, and equate it to

(q k%)-, where k is some integer.

Since A(x. +&-C=(q-k&t

it follows (because by hypothesis Ax C= q*) that

2 (Ax + kq)whence g= #_
2(Aand *.+

In the second Lemma to VI. 12 Diophantus does prove that the

equation Ax* + C=y* has an infinite number of solutions when

A +C is a square, i>. in the particular case where the value x= I

satisfies the equation. But he does not always bear this in mind;
for in III. 10 the equation S2x* + I2=y2

is regarded as impossible of

solution although 52+12 = 64, a square, and a rational solution is

therefore possible. Again in III. 12 the equation 266r2 10 =y* is

regarded as impossible though x = i satisfies it.

The method used by Diophantus in the second Lemma to

VI. 12 is like that of the Lemma to VI. 15.

Suppose that A + C = q
11

.

Put i + f for x in the original expression Ax* + C, and equate it

to (q kgf, where k is some integer.
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Thus A(i + ?+C=(q-k%}\
and it follows that 2 (A + kq} = ? (k- -A),

so that

It is of course necessary to choose k? such that & > A.

It is clear that, if X G satisfies the equation, C is a square, and

therefore this case (7) includes the previous case (yS).

It is to be observed that in VI. 14 Diophantus says that a rational

solution of the equation
Ax* - & = j/

8

is impossible unless A is the sum of two squares.

[In fact, if x-=p\q satisfies the equation, and Ax*- c2 = &,

we have Ap* = c*q* + k-q-,

Lastly, we have to consider

Form Ax* + Bx+C=y*.
This equation can be reduced by means of a change of variable

to the preceding form wanting the second term. For, if we put
D

x = z --
-j ,

the transformation gives

Diophantus, however, treats
'

this form of the equation quite

separately from the other and less fully. According to him the

rational solution is only possible in the following cases.

(a) When A is positive and a square, or the equation is

tfx
n- + Bx+ C=y\

Diophantus then puts y* = (ax mf, whence

= ?-c
^Exx 22 ^2am + B

(#) When C is positive and a square, or the equation is

Ax* + Bx + c* = y\

Diophantus puts_y
2 = (c mxf, whence

(Exx.IV.8, 9 etc.)
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(7) When ^B* - AC is positive and a square number. Dio-

phantus never expressly enunciates the possibility of this case;

but it occurs, as it were unawares, in IV. 31. In that problem

is to be made a square. To solve this Diophantus assumes

which leads to the quadratic $x+ 18 $x
a = o; but "the equation

is not rational." Accordingly the assumption 4** will not do;

"and we must find a square [to replace 4] such that 18 times

(this square + i) +(f)
2 may be a square." Diophantus then solves

the auxiliary equation i8(?
2 + 1) + =fy finding m=i8. He

then assumes 3*+ 18 -^a= (i8)
2^2

,
which gives $2$x* 3*- 18 = 0,

"and x=-^, that is ^.'
Jl

1 With this solution should be compared the much simpler solution of this case given

by Euler (Algebra, tr. Hewlett, 1840, Part n. Arts. 50-53), depending on the separation
of the quadratic expression into factors. (Curiously enough Diophantus does not separate

quadratic expressions into their factors except in one case, vi. 19, where however his

purpose is quite different : he has made the sum of three sides of a right-angled triangle

4^+ 6^+ 2, which has to be a cube, and, in order to simplify, he divides throughout by
x+ i, which leaves 4^+ 2 to be made a cube.)

Since \EP-AC is a square, the roots of the quadratic Ax*+ Bx + C=o are real, and

the expression has two real linear factors. Take the particular case now in question,

where Diophantus actually arrives at 3*+ 18- x* as the result of multiplying 6-x and

3+jr, but makes no use of the factors.

We have 3*+ i8-x
n-= (6-x) (3+*).

Assume then (6
-
x) (3 + x) =^ (6

-
*)

2
,

and we have /J(6-*

where/, q may be any numbers subject to the condition that ip*>q*. If^=
9, q*= 16,

we have Diophantus' solution x= .

In general, if Ax?+ x+C= (f+gx) (A+Jtx),

we can put (f+gx) (h + kx) = (f+gx)*,

whence ?
2
(A + >br) =/(/+*),

This case, says Euler, leads to a fourth case in which Ax3+Bx+ C=y* can be solved,

though neither A nor C is a square, and though ^-^Cis not a square either. The
fourth case is that in which Ax* + Bx + C is the sum of two parts, one of which is a square

and the other is the product of two factors linear in x. For suppose

Ax* + Bx+C=Z* + XY,
where Z=dx + e, X=/x+g, Y=hx + k.
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It is worth observing that from this example of Diophantus we

can deduce the reduction of this general case to the form

Ax* + C=y*
wanting the middle term.

Assume, with Diophantus, that Ax* + Bx+ C=m2x2
: therefore

by solution we have

A-m2

and x is rational provided that IB* AC+ Cm* is a square. This

condition can be fulfilled if \B* - AC is a square, by the pre-

We can then put Z2 + XY= (Z+^ JfY,

whence F=2^Z + 4/A',
q q>

,

that is, x (p
2f+ ipqd-fA) = kq*

-
ipqe -p

2
g.

Ex. i. Equation ix2 - i=y2
.

Put 2X*-i

* A

Therefore x- i = it-x+^(x+ i),

and x (f+ ipq -g*)=-(p* + q\
As x2 is alone found in our equation, we can take either the positive or negative sign

and we may put

Ex. 2. Equation ix2 + 'i=y
2

.

Here we put

Equating this to
-J2
+ - (x+ i)|

,

P P* ,we have i(x- i)
= 4

<- + -(*+ i),
1 ?

2V

or x (/>
-
iq

2
) =-(iqt+4j>q +/),

It is to be observed that this method enables us to solve the equation

Ax'1 -c2=y2

whenever it can be solved rationally, i.e. whenever A is the sum of two squares (d
2+ e2

,

say). For then

Ax2 - 2= d^x2 + (ex
-

c) (ex + c).

In cases not covered by any of the above rules our only plan is to try to discover one

solution empirically. If one solution is thus found, we can find any number of others; if

we cannot discover such a solution by trial (even after reducing the equation to the

simplest form A'x'2 + C=ya
), recourse must be had to the method of continued fractions

elaborated by Lagrange (cf. Oeuvres, II. pp. 377-535 and pp. 655 726 ; additions to

Euler's Algebra).
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ceding case. If \B'
i AC is not a square, we have to solve

(putting, for brevity, D for \B* AC) the equation

D + Cm2 =y\
and the reduction is effected.

(2) Double-equation.

By the name "double-equation" Diophantus denotes the pro-

blem of finding one value of the unknown quantity which will make

two different functions of it simultaneously rational square numbers.

The Greek term for the "double-equation" occurs variously as SwrXoi'-

croT?;?, St7rX?7 tVor??? or 8frr\rj to-axrt?. We have then to solve the

equations
mx 2 + a.x + a = u2

}

nx2 + fix + & = w2

}

in rational numbers. The necessary preliminary condition is that

each of the two expressions can severally be made squares. This

is always possible when the first term (in x2
) is wanting. This is

the simplest case, and we shall accordingly take it first.

I. Double-equation of the first degree.

Diophantus has one general method of solving the equations

ax + a = u2
'

taking slightly different forms according to the nature of the

coefficients.

(a) First method of solution of

ax + a = u2

This method depends upon the identity

If the difference between the two expressions in x can be separated
into two factors p, qt

the expressions themselves are equated
to {^(p+q)}

2
respectively. Diophantus himself (II. u) states his

rule thus.

"Observing the difference [between the two expressions], seek

two numbers such that their product is equal to this difference;

then equate either the square of half the difference of the two

factors to the lesser of the expressions or the square of half the

sum to the greater."
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We will take the general case and investigate to what particular

classes of cases the method is applicable, from Diophantus' point

of view, remembering that his cases are such that the final quadratic

equation in x always reduces to a simple equation.

Take the equations
Q.X + a =

Subtracting, we have

(a
-

) x + (a
-

b)
= if - w\

We have then to separate (a $)x + (a-b} into two factors;

let these be/, {(a
-

/3)* + (a
-

b]}lp.

We write accordingly
.

u w = -

P
u + w

Thus u2

4

therefore {(a-@)x + a-6 +/2

}

2 = 4/
2

(ax + a),

or (a
-

/3)
2
;tr

2 + 2x {(a
-

ff) (a
- b +/2

)
-

2p"a}+(a-b +/2

)
2 - 4/2

=o,

that is, (a
-

/S)
2*2 + 2x {(a -ft) (a- b} -/2

(a + )}

+ (a- by -2^(a + b} +^ = o.

Now, in order that this equation may reduce to a simple

equation, either

(i) The coefficient of x" must vanish, so that

-A
or (2) The absolute term must vanish, that is,

or /-
so that ab must be a square number.

Therefore either a and b are both squares, in which case we

may substitute & and d* for them respectively, / being then equal

to c d, or the ratio of a to b is the ratio of a square to a square.

With respect to (i) we observe that on one condition it is not

necessary that a /8 should vanish, z>. provided we can, before

solving the equations, make the coefficients of x the same in both

expressions by multiplying either equation or both equations by
some square number, an operation which does not affect the

problem, since a square multiplied by a square is still a square.
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In other words, it is only necessary that the ratio of a to @ should

be the ratio of a square to a square
1
.

Thus, if a/^ = m2

/n
2 or an?=@m*, the equations can be solved

by multiplying them respectively by nz and m*; we can in fact

solve the equations

like the equations
tax + a = u'

a.x + b = w
in an infinite number of ways.

Again, the equations under (2)

ax + c2 = u2

can be solved in two different ways according as we write them in

this form or in the form

obtained by multiplying them respectively by d*, c
1

*,
in order that

the absolute terms may be equal.

I shall now give those of the possible cases which we find solved

in Diophantus' own work. These are equations

(i) of the form

b =

1
Diophantus actually states this condition in the solution of iv. 32 where, on arriving

at the equations

he says :
" And this is not rational because the coefficients of x have not to one another

the ratio which a square number has to a square number."

Similarly in the second solution of III. 15 he states the same condition along with an

alternative condition, namely that a has to b the ratio of a square to a square, which is

the second condition arrived at under (2) above. On obtaining the equations

Diophantus observes "But, since the coefficients in one expression are respectively greater
than those in the other, neither have they (in either case) the ratio which a square number

has to a square number, the hypothesis which we took is useless."

Cf. also iv. 39 where he says that the equations

are possible of solution because there is a square number of units in each expression.
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a case which includes the more common one where the coefficients

ofx in both are equal \

(2) of the form
ax + c* = u2

}

solved in two different ways according as they are written in this

form or in the alternative form

General solution of Form ( i ) or

am2x + a = u2

a.n2x + b = w2
\'

Multiply by n2
,
m2

respectively, and we have to solve the

equations
am2

n'2x+an2 = tt'
2

\

The difference is an2 dm2
; suppose this separated into two

factors p, q.

Let u' w' =/,

u' 4- w = q ;

therefore u'2 = ^(p + qj, w'*

i (P #)
2

>

and am2n2x+ an2 = i (/ + q)
2
,

or a.m2n2x + bm2
\(p q)*.

Either equation gives the same value of x, and

a.m2n2

since pq = an2 bm2
.

Any factors /, q may be chosen provided that the resulting

value of x is positive.

Ex. from Diophantus :

65 -

65-24*

therefore
,

260 - 24^ = u'2

}

65 - 24^ = w2

j

'

The difference = 195 = 15 . 13, say;

therefore (15 I3)
2 = 65 24^; that is, 24^=64, and

=*2

l.

=^}'
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General solution (first method) of Form (2), or

ax + & = u
'z

\

/3x + d* = w'2

)'

In order to solve by this method, we multiply by d2
,

c2

respectively and write

u being supposed to be the greater.

The difference = (ad*
-

fic^x. Let the factors of this be/*, q.

Therefore u2 =
(px + qf,

w> = \(px-qf.
Thus x is found from the equation

This equation gives

fx* + 2x (pq - 2ad2
) + q^-^d- = O,

or, since pq = (ad
2

fie
2

),

p*x*
- 2x (ad

2 + &<*) + f-4c2d2^ o.

In order that this may reduce to a simple equation, as Dio-

phantus requires, the absolute term must vanish,

and q 2cd.

Thus our method in this case furnishes us with only one solution

of the double-equation, q being restricted to the value 2cd, and the

solution is

_ 2 (ad
2 + &")

Ex. from Diophantus. This method is only used in one par-

ticular case (IV. 39), where c* = d* as the equations originally stand,

the equations being

6x + 4 =

The difference is 2x, and q is necessarily taken to be 2\/4, or 4;

the factors are therefore ^x, 4.

Therefore %x + 4 = \ (%x+ 4)
2
,

and x= 112.

General solution (second method) of Form (2) or

ax + c2 =
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The difference = (a
-

/8) x + (<?
-

d*).

Let the factors of this be p, {(a
-

/3) ^ + cz -

Then, as before proved (p. 74), / must be equal to (c d).

Therefore the factors are

and we have finally

which equation gives two possible values for x. Thus in this case

we can find by our method two values of x, since one of the factors

p may be either (c + d) or (c
-

d).

Ex. from Diophantus. To solve the equations

(ill. 15.)

The difference is here 5^+ 5, and Diophantus chooses as the

factors 5, x+ i. This case therefore corresponds to the value

c + d of/. The solution is given by

(\x + 3)
2 = \QX + 9, whence x = 28.

The other value, c d, of / is in this case excluded, because it

would lead to a negative value of x.

The possibility of deriving any number of solutions of a double-

equation when one solution is known does not seem to have been

noticed by Diophantus, though he uses the principle in certain

cases of the single equation (see above, pp. 69, 70). Fermat was the

first, apparently, to discover that this might always be done, if one

value a of x were known, by substituting x + a for x in the equa-
tions. By this means it is possible to find a positive solution, even

if a is negative, by successive applications of the principle.

But, nevertheless, Diophantus had certain peculiar artifices by
which he could arrive at a second value. One of these artifices

(which is made necessary in one case by the unsuitableness of the

value of x found by the ordinary method) gives a different way of

solving a double-equation from that which has been explained, and

is used only in one special case (IV. 39).
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() Second method of solving a double-equation of the first

degree.

Consider only the special case

Take these expressions, and 2
,
and write them in order of

magnitude, denoting them for convenience by A, B, C.

A -B f , A-B
Therefore ~ -^ =-j ,

and _ _

Suppose now that Jix + 2 = (y + )* ;

therefore hx = y* + 2ny,

and

or

thus it is only necessary to make this expression a square.

Assume therefore that

and any number of values for y, and therefore for x, can be found,

by varying/.
Ex. from Diophantus (the only one), IV. 39.

In this case there is the additional condition of a limit to the

value of x. The double-equation

6x + 4 =

has to be solved in such a manner that x < 2.

Here -~=
,
and B is taken 1 to be (y + 2f.

Therefore A - B =
$ (f + 47) ;

therefore A

which must be made a square.

1 Of course Diophantus uses the same variable JT where I have for clearness used y.

Then, to express what I have called m later, he says: "I form a square from 3 minus

some number of JT'S, and x becomes some number multiplied by 6 and then added to 12,

divided by the difference by which the square of the number exceeds 3."
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If we multiply by f , we must make

3j
2 + 1 2y + 9 = a square,

wherey must be < 2.

Diophantus assumes

6m + 12
whence y = ,*'- 3

and the value of m is then taken such as to make j> < 2.

It is in a note on this problem that Bachet shows that the

double-equation
ax + a =

can be rationally solved by a similar method provided that the

coefficients satisfy either of two conditions, although none of the

coefficients are squares and neither of the ratios a : /3 and a : b is

equal to the ratio of a square to a square. Bachet's conditions are :

(1) That, when the difference between the two expressions

is multiplied or divided by a suitably-chosen number, and the

expression thus obtained is subtracted from the smaller of the

original expressions, the result is a square number, or

(2) That, when the difference between the two expressions

is multiplied or divided by a suitably-chosen number, and the

smaller of the two original expressions is subtracted from the

expression obtained by the said multiplication or division, the

result is a number bearing to the multiplier or divisor the ratio

of a square to a square
1
.

1 Bachet of course does not solve equations in general expressions (his notation does

not admit of this), but illustrates his conditions by equations in which the coefficients are

specific numbers. I will give one of his illustrations of each condition, and then set the

conditions out more generally.

Case (i). Equations

difference 2.r+ 6

The suitably-chosen number (to divide by in this case) is 2 ;

\ (difference) =x+ 3,

and (lesser expression)
-
| (difference) =x+ 7

-
(x + 3)

= 4, that is, a square.

We have then to find two squares such that

their difference 2 (difference between lesser and 4).

Assume that the lesser= (y + 2)
2
, 2 being the square root of 4.

Therefore (greater square) = 3 (lesser)
- 8
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2. Double-equation of the second degree,

or the general form

These equations are much less thoroughly treated in Diophan-
tus than those of the first degree. Only such special instances

To make 3;c
2 + 127 + 4 a square we put

3J
2
+I2J|/ + 4= (2-/^)

2
,

where p must lie between certain limits which have next to be found. The equation gives

In order that y may be positive, fp must be > 3 ;
and in order that the second of the

original expressions, assumed equal to (jy+2)
2

, may be greater than 7 (it
is in fact x+j),

we must have 0'+2)>2f (an a fortiori limit, since 2 >/7), or_y>|.

Therefore 4/ + 12 > f (/
2 -

3) ,

Suppose that 3/
2 =i6/ + 53|, which gives/= 7f.

Therefore / < 7$, but /
2 > 3.

Put /= 3 in the above equation ; therefore

3/+t2;/+ 4 = (2-37)2,

and j/
= 4 .

Therefore .r=0/+ 2)
2 -

7
=

29.

Case (2). Equations 6#+25 = 2

|

wH-j^f
;

difference 4^+22

The suitable-number (again to divide by) in this case is 2 ;

\ (difference)
= ix + 1 1,

and (difference)
-

(lesser expression) = 8=2.4,

where 2 is the divisor used, and 4 is the ratio of a square to a square.

Hence two squares have to be found such that

(their difference) = 2 (sum of lesser and 8).

If the lesser is j2
, the greater is 3jj/

2+ i6= (4 -pyf
1

, say.

Bachet gives, as limits for /,

/Mil /*>3
and puts p= 3. This gives 7= 4, so that jr= 6\.

Let us now state Bachet's conditions generally.

Suppose the equations to be

The difference is (a
-

/3)
*+ (a

-
b).

This has to be multiplied by
^ which is the "suitable" factor in this case, and, if

we subtract the product from fix + b, we obtain

ab-afi

'-^<*-*>.
-

T^T-
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occur as can be easily solved by the methods which we have

described for equations of the first degree.

The following types are found.

(i) p

The difference is (a /3)x + (a b\ and, following the usual

course, we may, e.g., resolve this into the factors

(1) The first of Bachet's conditions is that

ab-aS
a _ B

= a square =/2
/?

2
, say.

(2) The second condition is that

aB-ab _p ft

; a ratio of a square to a square.

It is to be observed that the first of these conditions can be obtained by considering

the equation

obtained on page 74 above.

Diophantus only considers the cases in which this equation reduces to a simple

equation ; but the solution of it as a mixed quadratic gives a rational value of x provided
that

{ (a
-

j8) (a
-

b) -f (a + B) }

2 -
(a
-
0)

2
{ (a

-
)

2 -
2/>

2
(a + b) +/4

}
is a square,

that is, if

^{(a +^-(a-^}+^{(a + l>)(a-^-(a
2
-^)(a-/>)} is a square,

which reduces to a/3/
2 + (a-/3) (ab-aB)~ a square ........................ (A).

This can be solved (cf. p. 68 above), if

ab-aB
is a square. (Bachet's first condition.)

Again take Bachet's second condition

aB - ab r*

p
= a square = -

z say,

and substitute fir
2
/*
2 for a/3

- a/> in the equation (A) above.

Therefore a/3/
2 -

(a
-

ft) /3
-^
= a square,

or aj3/'
2 --

(a
-

18) /3
= a square.

This is satisfied by p'=i; therefore (p. 69) any number of other solutions can

be found .

The second condition can also be obtained directly by eliminating x from the equations

ax + a= 2
1

for the result is
^
w2 + -*-y-

= 2
>

which can be rationally solved if

aB - a/'
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<"-

as usual, we put

or

In order that x may be rational a condition is necessary; thus

x is rational if

= 1 *~ 8

This is the case in the only instance of the type where a is not

equal to b, namely (III. 13)

the difference is i6x+4, and the resolution of this into the factors

4, ^x + i solves the problem.
In the other cases of the type a = b\ the difference is then

(a ft}x, which is resolved into the factors

'

ifa B \ 2

and we put p
2x2 + ax + a = - 4 2px ,

4\ 2p
r

j

4\ 2p

whence x =

Exx. from Diophantus :

xz -

and ^ +

(2) The second type found in Diophantus
1
is

x2 + ax + a = u- )

0x + a = zv*)'

where one equation has no term in x*, and p = i, a = b.

1 It is perhaps worth noting that the method of the "double-equation
" has a distinct

advantage in this type of cose. The alternative is to solve by the method of Euler (who
does not use the "

double-equation "), i.e. to put the linear expression equal to/* and then,

substituting the value of JT (in terms of/) in the quadratic expression, to solve the

62
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The difference x* + (*$)x is resolved into the factors

and we put &x + a = | (a
-

which gives x.

resulting equation in /. But the difficulties would generally be great. Take the case of

vi. 6 where

> have to be made squares.

If

(fp |)2
therefore x'

2 + i = ---h i has to be made a square,

or /4 -
2/

2 + 1 97 = a square.

This does not admit of solution unless we could somehow discover empirically one

value of / which would satisfy the requirement, and this would be very difficult.

Let us take an easier case for solution by this method,

which is solved by Euler (Algebra, Part II. Art. 222), and let us compare the working of

the two methods in this case.

I. Enter's method. Assuming x+ i ==/>
2 and substituting^

2
i for x in the quadratic

expression, we have

/4 -
2/J

2+ 2 = a square.

This can only be solved generally if we can discover one possible value of / by trial ;

this however is not difficult in the particular case, for/= i is an obvious solution.

To find others we put i + q instead of p in the expression to be made a square ; this

gives
i + 4^

2 + 4^
3 + ij

4 = a square.

This can be solved in several ways.

1. Suppose i + 4^
2 + 4^

8
-i-^

4
=(i + ?*)

2
;

thus 4$r" + 4^=2^2
, whence q --, p= - and x= ---.

2. Suppose i+4?
2 + 4?

3 +^=( I -?
2
)

2
;

thus 4^2 +4^= -2?
2

, and q= -|, /=-- and *=--.

3. Suppose i+4^
2 + 4^

3 + ^
4=(i2^^2

)

a
;

and we find, in either case, that q= -
i, so that/= -1,^= 0.

4. Suppose i + 4^2 + 4^
3 + y

4=
(

i + 2^
2
)

2
;

and we have 4^ + ^
4=4^

4
, whence

<?
= -, p= ~ and x=(-\ -i=^.

3 3 \3/ 9

This value of x satisfies the conditions, for

The above five suppositions therefore give only two serviceable solutions

x=-*, ,= *?.
4 9

To find another solution we take one of the values of q already found, say y= , and
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Exx. from Diophantus :

3*- 12 = u*)
*i ah (v- *)
O*;r 12 = T&j

(vi. 6.)

-6144*+ 1048576 = M ,
yl 22>

jr+ 64 = wir

substitute r - - for q. This gives /= i + ?= r+ -
, and we substitute this value for/ in the

expression /*
-
2/

a+ 2.

We have then ^-^r-- i*+ 'it
3+t* to be made a square, or

16 2 2

25
- 24r- 8^+32^+ i6^=a square.

i. We take S+A*^ for the root, so that the absolute term and the term in r4

may disappear. We can make the term in r disappear also by putting iof= - 24 or

/= - . We then have

(a) The upper sign gives
- 8+ 32r= 40 +/*+ 8A.

<* r

and r=(

thus P= , and jr=/2_ I=?r.
20 400

() The lower sign gives
-8 + 32r= -40+/2 -8A,

and r=(f

thus p= -
,
and or=^i as before.' 20 400

We have therefore .r+i =(^ , and
)

.

/

2. Another solution is found by assuming the root to be 5 +/r+g^ and determining

/and g so that the absolute term and the terms in r, r3 may vanish ; the result is

,_ 2 7 2/g-3? = 1550
/-

5
' ^^

125'
' ~

i6-^r
2 861

'

/-

1 1 . Method of
"
doubU-tqitation.

The difference =jca -jr.

(i) If we take as factors JT, x- i and, as usual, equate the square of half their

difference, or -
, to x+ i, we have

"=;
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The absolute terms in the last case are made equal by multiply-

ing the second equation by (i28)
2 or 16384.

(3) One separate case must be mentioned which cannot be

solved, from Diophantus' standpoint, by the foregoing method,

but which sometimes occurs and is solved by a special artifice.

The form of double-equation is

our2 4- ax = uz

\ (i),

/3;r
2 + bx = w*\ ( 2 ) .

Diophantus assumes ?/
2 = m^x*,

whence, by ( I
),

x = a/(m
z

a),

(2) If we take -x, tx-t, as factors, half the sum of which is -*- i, so that the
4

absolute terms may disappear in the resulting equation, we have

U^-libA
16 2

and *-.
9

(3) To find another value by means of the first, namely x= - -
, we substitute y - -

for x in the original expressions. We then have to solve

,-3 2|
= 1<t

Multiply the latter by so as to make the absolute terms the same, and we must have

a,+s.**
4' 16

Subtract from the first expression, and the difference is yt -^y=y (y- 1 5 then,

equating the square of half the difference of the factors to the smaller expression,
we have

so that 961=400^+100.

Therefore

(4) If we start from the known value and put j+ for j; in the equations, we

obtain Euler's fourth value of *, namely .7
2965284

Thus all the four values obtained by Euler are more easily obtained by the method of

the "double-equation."
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and, by substitution in (2), we derive that

ba
must be a square,m2

a.

a2
ft + ba (m2 -

a)or

We have therefore to solve the equation

abmz + a (aft a.b) =y2
,

and this form can or cannot be solved by the methods already

given according to the nature of the coefficients 1
. Thus it can

be solved if (a^ a.b}ja is a square or if a\b is a square.

Exx. from Diophantus :

* 4*--,
(VL I2.)

() Indeterminate equations of a degree higher than the second.

(i) Single equations,

These are properly divided by Nesselmann into two classes
;

the first comprises those problems in which it is required to make
a function of x, of a degree higher than the second, a square ;

the

second comprises those in which a rational value of x has to be

found which will make any function of x, not a square, but a higher

power of some number. The first class of problems requires the

solution in rational numbers of

Axn + Bxn~l + . . . + Kx + L =/>,

the second the solution of

Axn + Bxn~ l + . . . + Kx -f L =y3
,

for Diophantus does not go beyond making a certain function of

x a cube. In no instance, however, of the first class does the index

n exceed 6, while in the second class n does not (except in a

special case or two) exceed 3.

1

Diophantus apparently did not observe that the above form of double-equation can

be reduced to one of the first degree by dividing by x2 and substituting^ for i/jr, when it

becomes

Adapting Sachet's second condition, we see that the equations can be rationally solved

if (/3a
-
ab)la is a square, which is of course the same as one of the conditions under which

the above equation abttfi + a (aft a&) can be solved.
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First Class. Equation

Axn + Bxn~ l + . . . + Kx + L =
y".

The forms found in Diophantus are as follows :

i . Equation Ax* + Bx* + Cx + d2 =y\
Here, as the absolute term is a square, we might put for y

the expression mx + d, and determine m so that the coefficient

ofx in the resulting equation vanishes. In that case

2md = C, and m C\2d\

and we obtain, in Diophantus' manner, a simple equation for x,

giving
C*-^B

4tl*A
Or we might put for y the expression nPx* + nx + d, and deter-

mine m, n so that the coefficients of x, x* in the resulting equation
both vanish, in which case we should again have a simple equa-
tion for x. Diophantus, in the only example of this form of

equation which occurs (VI. 18), makes the first supposition. The

equation is

and Diophantus assumesy = \x + i, whence x = *.

2. Equation Ax* + Bx* + Cx* + Dx + E=y\
In order that this equation may be solved by Diophantus'

method, either A or E must be a square. If A is a square and
D

equal to a2
,
we may assume y = ax* H-- x + n, determining n so

that the term in x* vanishes. If E is a square (= ez

), we may write

y = mx* H x + e, determining m so that the term in x* in the

resulting equation may vanish. We shall then, in either case,

obtain a simple equation in x.

The examples of this form in Diophantus are of the kind

ayx4 + Bx 3 + Cx* + Dx + e* =f,
where we can assume y=ax* + kxe, determining k so that in

the resulting equation the coefficient of x3 or of x may vanish
;

when we again have a simple equation.

Ex. from Diophantus (iv. 28) :

Diophantus assumesy= yc* 6x+ i,and the equation reduces to

2jr 3 6> 2 = o, whence *=.
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Diophantus is guided in his choice of signs in the expression

ax'1 + kx e by the necessity for obtaining a "
rational

"
result.

Far more difficult to solve are those equations in which, the

left-hand expression being bi-quadratic, the odd powers of x are

wanting, i.e. the equations Ax* + Cx*1 +E =y* and Ax* + E=y*,
even when A or E is a square, or both are so. These cases

Diophantus treats more imperfectly.

3. Equation Ax* + Cx* + E =y*,

Only very special cases of this form occur. The type is

a*x* - c*x 2 + e2 =y\
which is written

a*x*-(? + ?L=y2.

Here y is assumed to be ax or ejx, and in either case we have

a rational value for x.

Exx. from Diophantus :

This is assumed to be equal to

where y*- is assumed to be equal to

4. Equation Ax* + E =y\
The case occurring in Diophantus is x* + 97 =yz

(V. 29). Dio-

phantus tries one assumption, y = xz
10, and finds that this gives

X* = -Q, which leads to no rational result. Instead, however, of

investigating in what cases this equation can be solved, he simply

drops the equation x* + 97 =j2 and seeks, by altering his original

assumptions, to obtain, in place of it, another equation of the same

type which can be solved in rational numbers. In this case, by

altering his assumptions, he is able to replace the refractory equa-

tion by a new one, ^4 + 337=j2
,
and at the same time to find a

suitable substitution for j, namely y = x* 25, which brings out

a rational result, namely x= ^-. This is a good example of his

characteristic artifice of "
Back-reckoning

1

/' as Nesselmann calls it.

5. Equation of sixth degree in the special form

x 6 Ax* + J3x + c 2

=y-.

" Methode der Zuriickrechnung und Nebenaufgabe."



90 INTRODUCTION

It is only necessary to put j>
= x 3 + c, and we have

-Ax* + B = 2cx\

-,A + 2C*

which gives a rational solution if B/(A + 2c) is a square.

6. If, however, this last condition does not hold, as in the case

occurring iv. 18, x6 i6xs + x + 64 =j/
2

, Diophantus employs his

usual artifice of "back-reckoning," which enables him to replace

the equation by another, Xs 128^ + ^ + 4096 =/2

,
where the

condition is satisfied, and, by assuming y = xs + 64, x is found to

be^.

Second Class, Equation of the form

Axn + Bxn~l + . . . + Kx + L =j3
.

Except for such simple cases as Ax2 =y3
,
Ax* =y3

t
where it is only

necessary to assumey = mx, the only cases occurring in Diophantus
are of the forms

i. Equation Ax* + Bx + C=y*.

There are only two examples of this form. First, in VI. I the

expression x* ^x + 4 is to be made a cube, being already a square.

Diophantus naturally assumes x 2 = a cube number, say 8, and

x= 10.

Secondly, in VI. 17 a peculiar case occurs. A cube is to be

found which exceeds a square by 2. Diophantus assumes (x i)
3

for the cube and (x+ i)
2 for the square, and thus obtains the

equation
** ~ 3^

2 + Zx ~ i =*2 + 2* + 3)

or x3 +x=4x z + 4,

previously mentioned (pp. 66-7), which is satisfied by ^ = 4.

The question arises whether it was accidentally or not that this

cubic took so simple a form. Were x-i, x+i assumed with

knowledge and intention? Since 27 and 25 are, as Fermat

observes 1

,
the only integral numbers which satisfy the conditions,

it would seem that Diophantus so chose his assumptions as to lead

back to a known result, while apparently making them arbitrarily

with no particular reference to the end desired. Had this not

1 Note on vi. 17, Oeuvi-es, I. pp. 333-4, II. p. 434. The fact was proved by Euler

(Algebra, Part II. Arts. 188, 193). See note on vi. 17 infra for the proof.
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been so, we should probably have found him, here as elsewhere

in the work, first leading us on a false tack and then showing us

how we can correct our assumptions. The fact that he here

makes the right assumptions to begin with makes us suspect that

the solution is not based on a general principle but is empirical

merely.

2. Equation Ax 3 + Ex* + Cx+D =f.
If A or D is a cube number, this equation is easy of solution.

jy

For, first, if A =
a?, we have only to write y = ax +

a ,
and we

obtain a simple equation in x.

Secondly, if D = d3
,
we put y = ^

x + d.

If the equation is a3x s + JBx2 + Cx+ ds =y3
,
we can use either

assumption, or we may put y = ax + d, obtaining a simple equation
as before.

Apparently Diophantus used the last assumption only ;
for

in IV. 27 he rejects as impossible the equation

because y = 2x i gives a negative value x= ^, whereas either

of the other assumptions gives a rational value 1
.

( 2 ) Double-equations.

There are a few examples in which, of two functions of x, one

is to be made a square, and the other a cube, by one and the same

rational value of x. The cases are for the most part very simple ;

e.g. in vi. 19 we have to solve

2X+ I =
thus j/

3 = 2z*, and z = 2.

A rather more complicated case is VI. 21, where we have the

double-equation
2X

Diophantus assumes y = mx, whence x = 2/(m
2

2), and we have

2 V / 2 \
2 2

2

2m*

(m*
-

2)
3

1 There is a special case in which C and D vanish, Ay?+ Bx~y*. Here y is put

equal to mx, and x=BI(mz -
A). Cf. IV. 6, 28 (i).
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To make 2m* a cube, we need only make 2m a cube or put

m =
4. This gives x=\.
The general case

Ax9 + Bx" + Cx =

would, of course, be much more difficult; for, putting y = mx, we
have

x=cl(m?-b),

and we have to solve

or Ccm* + c(Bc- 2bC) m? + be (bC-c) + Ac3 = u3
,

of which equation the above corresponding equation is a very

particular case.

Summary of the preceding investigation,

1. Diophantus solves completely equations of the first degree,

but takes pains to secure beforehand that the solution shall be

positive. He shows remarkable address in reducing a number of

simultaneous equations of the first degree to a single equation in

one variable.

2. For determinate equations of the second degree he has

a general method or rule of solution. He takes, however, in the

Arithmetica^ no account of more than one root, even where both

roots are positive rational numbers. But, his object being simply
to obtain some solution in rational numbers, we need not be

surprised at his ignoring one of two roots, even though he knew
of its existence.

3. No equations of a degree higher than the second are solved

in the book except a particular case of a cubic.

4. Indeterminate equations of the first degree are not treated

of in the work. Of indeterminate equations of the second degree,
as Ax* + Bx + C=y*> only those cases are fully dealt with in which

A or C vanishes, while the methods employed only enable us to

solve equations of the more general forms

Ax* + C=y> and Ax* + Bx+ C=f
when A, or C, or \B? -AC is positive and a square number, or (in

the case of Ax* C=y2

) when one solution is already known.
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5. For double-equations of the second degree Diophantus has

a definite method when the coefficient of x* in both expressions
vanishes

;
the applicability of this method is, however, subject to

conditions, and it has to be supplemented in one or two cases by
another artifice. Of more complicated cases we find only a few

examples under conditions favourable for solution by his method.

6. Diophantus' treatment of indeterminate equations of degrees

higher than the second depends upon the particular conditions of

the problems, and his methods lack generality.

7. More wonderful than his actual treatment 9f equations are

the clever artifices by which he contrives to avoid such equations
as he cannot theoretically solve, e.g. by his device of "back-

reckoning," instances of which would have been out of place in

this chapter and can only be studied in the problems themselves.

I shall not attempt to class as "methods" certain headings
in Nesselmann's classification of the problems, such as (a)

" Solution

by mere reflection," ()
" Solution in general expressions," of which

there are few instances definitely so described by Diophantus, or

(c) "Arbitrary determinations and assumptions." The most that

can be done by way of describing these " methods "
is to quote

a few characteristic instances. This is what Nesselmann has

done, and he regrets at the end of his chapter on " Methods of

Solution" that it must of necessity be so incomplete. To under-

stand and appreciate the various artifices of Diophantus it is in

fact necessary to read the problems themselves in their entirety.

With regard to the " Use of the right-angled triangle," all that

can be said of a general character is that only
"
rational

"
right-

angled triangles (those namely in which the three sides can all be

represented by rational numbers) are used in Diophantus, and

accordingly the introduction of the "
right-angled triangle

"
is

merely a convenient way of indicating the problem of finding

two square numbers, the sum of which is also a square number.

The general form used by Diophantus (except in one case, VI. 19,

q.v.) for the sides of a right-angled triangle is (at + i?), (a'P),
2ab, which expressions clearly satisfy the condition

The expression of the sides of a right-angled triangle in this form

Diophantus calls "forming a right-angled triangle from the

numbers a and b" His right-angled triangles are of course

formed from particular numbers. "
Forming a right-angled
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triangle from 7, 2
"
means taking a right-angled triangle with sides

(7
s + 2"), (7

s ~ 22
), 2 . 7 . 2, or 53, 45, 28.

II. METHOD OF LIMITS.

As Diophantus often has to find a series of numbers in

ascending or descending order of magnitude, and as he does not

admit negative solutions, it is often necessary for him to reject

a solution which he has found by a straightforward method

because it does not satisfy the necessary condition
;
he is then

very frequently obliged to find solutions which lie within certain

limits in place of those rejected.

1. A very simple case is the following : Required to find

a value of x such that some power of it, xn ,
shall lie between two

given numbers. Let the given numbers be a, b. Then Diophantus'
method is to multiply both a and b by 2n

, 3", and so on, successively,

until some wth power is seen which lies between the two products.

Thus suppose that cn lies between ap
n and bp

n
; then we can put

x = c\p, in which case the condition is satisfied, for (<://)
n lies

between a and b.

Exx. In IV. 31 (2) Diophantus has to find a square between

i \ and 2. He multiplies both by a square, 64 ;
this gives 80 and

128, and 100 is clearly a square which lies between them; there-

fore (gf or f| satisfies the prescribed condition.

Here, of course, Diophantus might have multiplied by any
other square, as 16. In that case the limits would have become

20 and 32 ,
between these lies the square 25, which gives the same

square ff as that before found.

In VI. 21 a sixth power ("cube-cube") is sought which shall

lie between 8 and 16. The sixth powers of the first four natural

numbers are I, 64, 729, 4096. Multiply 8 and 16 by 2 6 or 64, and

we have as limits 512 and 1024, between which 729 lies. There-

fore -7
^j

9- is a sixth power satisfying the given condition. To

multiply by 729 in this case would not give us a solution.

2. Sometimes a value of x has to be found which will give

some function of x a value intermediate between the values of two

other functions of x.

Ex. i. In IV. 25 it is necessary to find a value of x such that

8/(;r
2
+.*) shall lie between x and x + i.

The first condition gives 8 >x3 + x*.
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Diophantus accordingly assumes that

which is greater than x s +x*.

Thus # = f satisfies one condition. It is also seen to satisfy
o

the second condition, or - <x+ I. Diophantus. however, says
x* + x

nothing about the second condition being satisfied
;
his method is,

therefore, here imperfect.

Ex. 2. In V. 30 a value ofx has to be found which shall make

* > | (*
2 -

60) but <l(;tr
2

-6o),

that is, x* 60 >
x* - 60 < &r

Hence, says Diophantus, x is not less than 1 1 and not greater

than 12. We have already spoken (p. 60 sqq.) of his treatment

of such cases.

Next, the problem in question requires that x* 6o shall be

a square. Assume then that

x* 60 = (x mf,

and we have x (m* + 6o)/2m.

Since, says Diophantus,^ is greater than 11 and less than 12,

it follows that

m2 + 60 > 22m but < 247/2 ;

and m must therefore lie between 19 and 21 (cf. p. 62 above).

He puts m = 20, and so finds x=n^.

III. METHOD OF APPROXIMATION TO LIMITS.

We come, lastly, to a very distinctive method called by

Diophantus TrapHrorrjs or Trapia-orijTos dytoyrj. The object of this

is to solve such problems as that of finding two, or three, square
numbers the sum of which is a given number, while each of them

approximates as closely as possible to one and the same number.

This method can be best exhibited by giving Diophantus' two

instances, in the first of which two such squares, and in the second

three, are required. In cases like this the principles cannot be

so well indicated with general symbols as with concrete numbers,
which have the advantage that their properties are immediately
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obvious, and the separate expression of conditions is rendered

unnecessary.

Ex. I. Divide 13 into two squares each of which >6 (v. 9).

Take half of 13, or 6^, and find what small fraction ijx^ added

to it will make it a square : thus

6^ + ,
or 26 H -

, must be a square.

Diophantus assumes

26+ -3 Y$ +
i) i

or 26j
2 + i = ($y -f i)

a
,

whencey= 10 and 1/7*
= ^, or i/^ =^; and

6^+^= a square, (W-

[The assumption of (i^+i)
4

is not arbitrary, for assume

26?*+ i (Py-\- i)
s
> and_y is then 2//(26 /"); since ijy should be

a small proper fraction, $ is the most suitable and the smallest

possible value for/, inasmuch as 26 -f < 2p or/
8 + 2p + i > 27.]

It is now necessary, says Diophantus, to divide 13 into two

squares the sides of which are both as near as possible to f^.

Now the sides of the two squares into which 13 is naturally

decomposed are 3 and 2, and

3 is > ft by &,

2 is < ft by ^
But, if 3 -fa ,

2 + ^ were taken as the sides of two squares, the

sum of the squares would be

which is > 13.

Accordingly Diophantus puts 3 gx, 2 + i ix for the sides of

the required squares, where therefore x is not exactly ^ but

near it.

Thus (3
-

9*)' + (2 + i \xj = 1 3,

and Diophantus obtains ^r=_^T.

The sides of the required squares are ff, f$f.

[It is of course a necessary condition that the original number,
here 13, shall be a number capable of being expressed as the sum
of two squares.]
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Ex. 2. Divide 10 into three squares such that each of them
is > 3 (v. n).

[The original number, here 10, must of course be expressible
as the sum of three squares.]

Take one-third of 10, or 3^, and find what small fraction of the

form i/x* added to 3^ will make a square; i*. we have to make

30 + ,
a square, or 30^+ i a square, where 3/r= i/y.

Diophantus assumes

307*+ i =(57+ i)*,

whence .7
= 2 and therefore i/* =& ; and 3^ + f̂f

=W a square.

[As before, if we assume y*)P = (py+ i)
J
,^'
= 2//(3O /*); and,

since ijy must be a small proper fraction, 30 p* should be < 2p,

or /* + 2/-f i >3i. Accordingly Diophantus chooses 5 for/ as

being the smallest possible integral value.]

We have now, says Diophantus, to make each of the sides

of our required squares as near as may be to ty.

Now 10

and 3, f, are the sides of three squares the sum of which is 10.

Bringing (3, f, ) and -^ to a common denominator, we have

And

If now we took 3 f$, f + , f + f for sides of squares, the

sum of the squares would be 3 (*f or ^^, which is > 10.

Accordingly Diophantus assumes as the sides of the three

required squares
3-35*. f + 37*. 1 + 31*.

where x must therefore be not exactly ^ but near it

Solving (3
-

3^r) + (f + 37^ + (| + 31*)* = 10,

or 10-116*+ 3555**= 10,

we find x =j^ ;

the required sides are therefore

and the required squares
1745041 lesigys 1658944
505681 505521 50B6X1 *
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Other instances of the application of the method will be found

in V. 10, 12, 13, 14, where, however, the squares are not required to

be nearly equal, but each of them is subject to limits which may
be the same or different

; e.g. sometimes each square is merely

required to be less than a given number (10, say), sometimes the

squares lie respectively between different pairs of numbers, some-

times they are respectively greater than different numbers, while

they are always subject to the condition that their sum is a given

number.

As it only lies within the scope of this Introduction to explain
what we actually find in Diophantus, I cannot do more than give
a reference to such investigations as those of Poselger in his
"
Beitrage zur unbestimmten Analysis" published in the Abhand-

lungen der Koniglichen Akademie der Wissenscliaften zu Berlin aus

dem Jahre 1832, Berlin, 1834. One section of this paper Poselger

entitles
"
Annaherungs-methoden nach Diophantus," and obtains

in it, on Diophantus' principles, a method of approximation to the

value of a surd which will furnish the same results as the method

of continued fractions, with the difference that the "
Diophantine

method "
is actually quicker than the method of continued frac-

tions, so that it may serve to expedite the latter.



CHAPTER V

THE PORISMS AND OTHER ASSUMPTIONS IN DIOPHANTUS

I HAVE already mentioned (in Chapter I.) the three explicit refer-

ences made by Diophantus to
" The Porisms " and the possibility

that, if these formed a separate work, it may have been from that

work that Diophantus took a number of other propositions relating

to properties of numbers which he enunciates or tacitly takes for

granted in the Arithmetica.

I begin with the three propositions for which he expressly

refers to
" The Porisms."

Porism i. In V. 3 he says, "We have it in the Porisms that,
' If each of two numbers and their product when severally added to

the same given number produce squares, the squares with which

they are so connected are squares of two consecutive numbers 1
.'"

That is to say, if x + a = mz
, y + a = n*, and if xy + a is also a

square, then m~n=i.
The theorem is not correctly enunciated, for it would appear

that m ~ n = i is not the only condition under which the three

expressions may be simultaneously squares.

For suppose
x + a = m*, y + a = n\ xy + a =/2

.

By means of the first two equations we have

xy + a = m*ri* a (m
2 + n2 -

i) + a\

In order that

nfif- - a (m* + 2
i ) + a*

may be a square certain conditions must be satisfied. One suffi-

cient condition is

or m ~ n = i
,

which is Diophantus' condition.

1

Literally "(the numbers) arise from two consecutive squares" (yeybvaffiv avb 8i5o

r(av Kara TO (%?}*)

72
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But we may also regard

as an indeterminate equation in m of which we know one solution,

namely m = n i .

Other solutions are then found by substituting z + (n i) for

m, whence we obtain the equation

(n
z

-a)z*+2{n*(n i)-a(ni)}z
+ O2 -

a)(n i )
2 - a (n

z - i ) +
2 =/2

,

or (n- -a) z2 + 2 (n* -a)(n i)z + {n(n i)-a}
2

=p\

which is easy to solve in Diophantus' manner, since the absolute

term is a square.

But in the problem V. 3 three numbers are required, such that

each of them, and the product of each pair, when severally added

to a given number, produce squares. Thus if the third number be

z, three additional conditions have to be satisfied, namely

z 4- a = it
2
,

zx + a = v2
, zy + a = w*.

The two last conditions are satisfied, if m+i=n, by putting

z = 2 (x +y) i = 4.m* -f 40? + I - 4a,

when xz + a = {m(2m + i)
-

2a}
2

and

and perhaps this means of satisfying the conditions may have

affected the formulation of the Porism 1
.

The problem V. 4 immediately following assumes the truth of

the same Porism with a substituted for -f a.

Porism 2. In V. 5 Diophantus says,
"
Again we have it in the

Porisms that,
' Given any two consecutive squares, we can find in

addition a third number, namely the number greater by 2 than the

double of the sum of the two squares, which makes, the greatest of

three numbers such that the product of any pair of them added to

either the sum of that pair or the remaining number gives a square."'

That is, the three numbers

1 Euler has a paper describing and illustrating a general method of finding such

"porisms" the effect of which is to secure that, when some conditions are satisfied, the

rest are simultaneously satisfied ("De problematibus indeterminatis quae videntur plus

quam determinata" in Novi Commentarii Acad. Petropol. 1756-57, Vol. vi. (1761),

p. 85 sqq. = Commentationes arithmeticae collectae, I. pp. 245 259). This particular

porism of Diophantus appears as a particular case in 13 of the paper.
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have the property that the product of any two plus either the sum
of those two or the remaining number gives a square. In fact, if

X, Y, Z denote the numbers respectively,

XY+X+ Y=( m* + m+i)*, XY+Z=(m* + m + 2)*,

\T7 i y i 7
f ^ jj/- J- "2ff* -I- 2^* V'7 -I- y /?/* _L 24** _l_ ^\*

ZJf + Z +^ = (2/
s + / + 2)

2
, Z^+ K=(2* s + +!).

Porism 3 occurs in v. 16. Unfortunately the text is defective

and Tannery has had to supply three words 1
;
but there can be no

doubt that the correct statement of the Porism here in question is

" The difference of any two cubes is also the sum of two cubes,"

i.e. can be transformed into the sum of two cubes, or two cubes can

be found the sum of which is equal to the difference between any
two given cubes. Diophantus contents himself with the enuncia-

tion of the proposition and does not show how to prove it or how
he effected the transformation in practice. The subject of the

transformation of sums and differences of cubes was investigated

by Vieta, Bachet and Fermat
Vieta (Zetetica, IV. 18-20) has three problems on the subject

(i) Given two cubes, to find in rational numbers two other

cubes such that their sum is equal to the difference of the given

cubes 8
.

As a solution of a* fc=x*+y*, he finds

a(a?-2P)
a* + P ' y ~

rotj Uoplfffount on
" Tarrwr Suo Kvfiur i) irrepaxh Kvfkai> <

3 The solution given by Vieta is obtainable thus. The given cubes being a3 , A3, where

a> b, we assume x -
b, a - kx as the sides of the required cubes.

Thus

whence

This reduces to a simple equation if we assume

lP-a?Jk=o, or Jk =
in which case

and the sides of the cubes are therefore

Vieta's second problem is similarly solved by taking a+x, kx-b as the sides of the

required cubes, and the third problem by taking x - 6, kx - a as the sides of the required

cubes respectively.
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(2) Given two cubes, to find in rational numbers two

others such that their difference is equal to the sum of the given

cubes.

Solving a3 + & = x3
}>

3
,
we find that

(3) Given two cubes, to find in rational numbers two cubes

such that their difference is equal to the difference of the given

cubes.

For the equation a3 - d3 = x 3 j3
,
Vieta finds

_ b(2a*-P) _ a (26
s -a9

)
;

at + b3 ' y=
tf + b3

as a solution 1
.

In the solution of (1} x is clearly negative if 2& >a3
; therefore,

in order that the result may be "
rational," a3 must be > 2^. But

for a " rational
"
result in (3) we must, on the contrary, have a3 < 2b3

.

Fermat was apparently the first to notice that, in consequence, the

processes in (i) and (3) exactly supplement each other, so that by

employing them successively we can effect the transformation

required in (i) even when a3
is not > 2b3

.

The process (2) is always possible ; therefore, by a suitable

combination of the three processes, the transformation of a sum
of two cubes into a difference of two cubes, or of a difference of

two cubes into a sum or a difference of two other cubes is always

1 Vieta's formulae for these transformations give any number of very special solutions

(in integers and fractions)of the indeterminate equation jcs +y3 + z?= v3
, including solutions

in which one of the first three cubes is negative. These special solutions are based on

the assumption that the values of two of the unknowns are given to begin with. Euler

observed, however, that the method does not give all the possible values of the other two

even in that case. Given the cubes 3
3 and 4

3
, the method furnishes the solution

3
3 + 4

3

+( Y=( Y, but not the simpler solution 3
3 + 4

3 +53= 63 . Euler ac-

cordingly attacked the problem of solving the equation x?+y3 + zs= v3 more generally.

He began with assuming only one, instead of two, of the cubes to be given, and, on that

assumption, found a solution much more general than that of Vieta. Next he gave a

more general solution still, on the assumption that none of the cubes are given to begin
with. Lastly he proceeded to the problem To find all the sets of three integral cubes the

sum of which is a cube and showed how to obtain a very large number of such sets

including sets in which one of the cubes is negative (Novi Commentarii Acad. Petropol-

175657, Vol. VI. (1761), p. 155 sq. = Comnientadones arithmeticae, I. pp. 193 207).

The problem of solving xs +y3=z3 + 7p in integers in any number of ways had occupied

Frenicle, who gave a number of solutions (Oeuvres de Fermat, ill. pp. 420, 535) ; but the

method by which he discovered them does not appear,



THE PORISMS AND OTHER ASSUMPTIONS 103

practicable
1
. Fermat showed also how, by a repeated use of the

several processes as required, we can transform a sum of two cubes

into a sum of two other cubes, the latter sum into the sum of two

others and so on ad infinitum*.

Besides the " Porisms
"

there are many other propositions

assumed or implied by Diophantus which are not definitely called

1 Fermat (note on IV. 2) illustrates by the following case :

Given two cubes 125 and 64, to transform their difference into the sum of two other

cubes.

Here a=s, 6=4, and so 26s> a3
',
therefore we must first apply the third process

by which we obtain

'-"(*)' -(*)'

As f -7
J
> 2 / -~-

J
, we can, by the first process, turn the difference between the

cubes
(
--

)
and

(
?-

)
into the sum of two cubes.

\<>3/ \63/
" In fact," says Fermat, "if the three processes are used in turn and continued

ad infinitum, we shall get a succession ad infinitum of two cubes satisfying the same
condition ; for from the two cubes last found, the sum of which is equal to the difference

of the two given cubes, we can, by the second process, find two more cubes the difference

of which is equal to the sum of the two cubes last found, that is, to the difference

between the two original cubes; from the new difference between two cubes we can

obtain a new sum of two cubes, and so on ad infinitum"

As a last illustration, to show how a difference between cubes can be transformed into

the difference between two other cubes even where the condition for process (3) is not

satisfied, Fermat takes the case of 8- i, i.e. the case where

a= 2, d=i and o?>ilP.

First use process (i) and we have

--='+
Then use process (2), and

2
Suppose it required to solve the fourth problem of transforming the sum of two cubes

into the sum oftwo other cubes.

Let it be required so to transform 23+ i
3 or 9.

First transform the sum into a difference of two cubes by process (2). This gives

The latter two cubes satisfy the condition for process (3) and, applying that process,

we get

/2oV_ /i7\ /I88479V _ f
365*oV

\ II \7 / \9039 1 / \939 1 /

The cubes last found satisfy the condition for process ( i), and accordingly the difference

between the said last cubes, and therefore the sum of the original cubes, is at last trans-

formed into the sum of two other cubes.
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porisms, though some of them are of the same character as the

three porisms above described.

Of these we may distinguish two classes.

I. The first class of theorems or facts assumed without ex-

planation by Diophantus are more or less of the nature of identical

formulae. Some are quite simple, e.g. the facts that the expressions

[%(a+b}}
z ab and a* (a + i)

2 + a2 + (a + i)
2 are respectively

squares, that the expression a (a
2

a) + a + (a*
-

a) is always a

cube, and the like.

Others are more difficult and betoken a certain facility in work-

ing with quasi-algebraical expressions. Examples of this kind are

the following :

(a) If X=a2x+2a, Y=(a + i)*x + 2(a + i
), or, in other words,

if xX + i =(ax+ i)
2
, xY+ i=[(a+ i)x+ i}

2
,
then XY + i is a

square [IV. 20]. As a matter of fact,

(/3) 8 times a triangular number plus \ gives a square [IV. 38].

In fact, 8 .
(1) + j = (2x + i)

2
.

(7) If Xa = m\ Ya = (m + i)
2
,
and Z=2(X+Y)-i,

then the expressions YZ a, ZX a, XY a are all squares.

(The upper signs refer to the assumption in V. 3, the lower to that

in V. 4.)

In fact, YZ a = {(m + i)(2m + i) + 2a}\

ZX a= [m(2m + i)+ 2a}
2
,

XYa={m(m+ i) + a}\

then the six expressions

FZ-( F+Z), ZX-(Z+X), XY-(X+ F)

YZ-X, ZX-Y, XY-Z
are all squares [v. 6].

In fact,

YZ -
( F+ Z) = (2m* + $m + 3)

2
,
FZ -X = (2m* + $m + 4)

2
,
etc.

2. The second class is much more important, consisting of a

number of propositions in the Theory of Numbers which we find
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first stated or assumed in the Arithmetica. It was, in general, in

explanation or extension of these that Fermat's most famous notes

were written. How far Diophantus possessed scientific proofs of

the propositions which he assumes, as distinct from a merely

empirical knowledge of them, must remain to a great extent

matter of speculation.

(a) Theorems in DiopJtantus respecting the composition of num-

bers as the sum of two squares.

(1) Any square number can be resolved into two squares in

any number of ways, II. 8.

(2) Any number which is the sum of two squares can be

resolved into two other squares in any number of ways, II. 9,

N.B. It is implied throughout that the squares may be frac-

tional as well as integral.

(3) If there are two whole numbers each of which is the sum of
tivo squares, their product can be resolved into the sum of two squares
in two ways, III. 19.

The object of III. 19 is to find four rational right-angled triangles

having the same hypotenuse. The method is this. Form two

right-angled triangles from (a, b) and (c, d) respectively, i.e. let

the sides of the triangles be respectively

and c- + d\ ? - d*, 2cd.

Multiplying all the sides in each by the hypotenuse of the other,

we have two triangles with the same hypotenuse, namely

(a* + &}((* + d z

), (a
2 -

P)(<* + d*\ 2ab (t* + d*\

and (* + P)(e? + d-\ (a
2 + P)((*

-
d*), 2cd (a* + #).

Two other triangles having the same hypotenuse are obtained

by using the theorem enunciated. In fact,

(a
2 + b*)(c* + d*)

= (ac bd^ + (ad + be?

and the triangles are formed from ac bd, ad + be, being the

triangles

(a
2 + P)(c- + d*\ \abcd + (a

2 -
b*)(c-

-
d*), 2(ac-\- bd)(ad

-
bc\

(a* + &)((? + d"-\ ^abcd - (a
2 -

&*)(<;*
-
d*\ 2 (ac

- bd)(ad + be).
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In the case taken by Diophantus

and the four triangles are respectively

(65, 52, 39), (65, 60, 25), (65, 63, 16), (65, 56, 33).

(If certain relations 1 hold between a, b, c, d, this method fails.

Diophantus has provided against them by taking two triangles
"
in

the smallest numbers" (VTTO eXa%to-T&>i> dpid/j,oov), namely 3,4, 5 and

5, 12, 13.)

Upon this problem III. 19 Fermat has a long and important
note which begins as follows

2
:

"
[i] A prime number of the form 4^+1 is the hypotenuse of

a right-angled triangle in one way only, its square is so in two

ways, its cube in three, its biquadrate in four ways, and so on ad

infinitum.

"[2] The same prime number 4 + I and its square are the

sum of two squares in one way only, its cube and its biquadrate
in two ways, its fifth and sixth powers in three ways, and so on ad

infinitum.

"[3] If a prime number which is the sum of two squares be

multiplied into another prime number which is also the sum of

two squares, the product will be the sum of two squares in two

ways ;
if the first prime be multiplied into the square of the second

1
(i) We must not have a\b c\d or a\b= d\c, for in either case one of the perpendiculars

of one of the resulting triangles vanishes, making that triangle illusory. Nor (2) must

c\d be equal to (a + b)l(a-b) or to (a-l>)j(a + l>), for in the first case ac-bd=ad+bc,
and in the second case ac + bd=ad-bc, so that one of the sums of squares equal to

(a? + l>
2
) (c

2 + cf2
)

is the sum of two equal squares, and consequently the triangle formed

from the sides of these equal squares is illusory, one of its perpendicular sides vanishing.
3 G. Vacca (in Bibliotheca Mathematica, H3 . 1901, pp. 358-9) points out that Fermat

seems to have been anticipated, in the matter of these theorems, by Albert Girard, who
has the following note on Diophantus v. 9 (Oeuvres mathhnatiques de Simon Stevin par
Albert Girard, 1634, p. 156, col. i):

" ALB. GlR. Determinaison d'un nombre qui se peut diviser en deux quarrez entiers.

I. Tout nombre quarre.

II. Tout nombre premier qui excede un nombre quaternaire de 1'unite.

III. Le produict de ceux qui sont tels.

IV. Et le double d'un chacun d'iceux.

Laquelle determinaison n'estant faicte n'y de PAutheur n'y des interpretes, servira tant

en la presente et suivante comme en plusieurs autres.
"

Now Girard died on 9 December, 1632 ; and the Theorems of Fermat above

quoted are apparently mentioned by him for the first time in his letter to Mersenne of

25 December, 1640 (Oeuvres de Fermat^ II. p. 213). Was the passage of Girard known
to Fermat ?
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prime, the product will be the sum of two squares in three ways ;

if the first prime be multiplied into the cube of the second, the

product will be the sum of two squares in four ways, and so on

ad infinitum*."

It is not probable that Diophantus was aware that prime num-

bers of the form 4# + I and numbers arising from the multiplication

of such numbers are the only classes of numbers which are always

the sum of two squares ;
this was first proved by Euler 2

. But it

is remarkable that Diophantus should have selected the first two

prime numbers of the form 4+ I, namely 5 and 13, which are

both sums of two squares, as the hypotenuses of his first two right-

angled triangles and then made their product, 65, the hypotenuse
of other right-angled triangles, that product having precisely the

property of being, as in Fermat's [3], the sum of two squares in

two ways. Diophantus may therefore have had an inkling, whether

obtained empirically or otherwise, of some of the properties enunci-

ated by Fermat.

(4) Still more remarkable is a condition of possibility of solution

prefixed to the problem V. 9. The object of this problem is
" to

divide I into two parts such that, if a given number is added to

either part, the result will be a square." Unfortunately, the text

of the added condition is uncertain. There is no doubt about the

first few words,
" The given number must not be odd" />. No number

of tlieform 4 + 3 [or 4*1 i] can be tJte sum of two squares.

The text, however, of the latter half of the condition is corrupt.

The true condition is given by Fermat thus :

" The given number

must not be odd, and the double of it increased by one, when divided

by tJte greatest square which measures it, must not be divisible by a

prime number of the form %n I." (Note upon V. 9; also in a

letter to Roberval 3
.) There is room for any number of conjectures

as to what may have been Diophantus' words 4
.

1 For a fuller account of this note see the Supplement, section I.

8 Novi Commentarii Acad. Petrofol. 1751-3, Vol. IV. (1758), pp. 3-40, and 1754-5,
Vol. v. (1760), pp. 3-58= Commentationes arithmcticae, I. pp. 155-173 and pp. 110233 '>

cf. Legendre, Zahlentheorie, tr. Maser, I. p. 108; Weber and Wellstein's EncyclopdtSe
der Ekmentar-Mathematik, I2 . pp. 285 sqq.

3 Ofttvres de Fermat, II. pp. 203-4, See the Supplement, section I.

4 Bachet's text has 5e? 5^ rbv di86tJKvov /n^re re/xerffdr flrcu, fir/re 6 SwXcurfuH' oirrou

q' n a. neifova. txi P*(KK 5. 17 fifrpeiTai irrb rov a ". t*.

He also says that a Vatican MS. reads nijre 6 5ir\affiw afoov aptOnov /xortWa a.

fjLti^ova txV M^pos TfTaprov, rj fjLerpeirai intb rov ffxarov apiffpov.

Neither does Xylander help us much. He frankly tells us that he cannot understand
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There would seem to be no doubt that in Diophantus' condition

there was something about " double the number "
(i.e. a number of

the form \n\ also about "
greater by unity

" and " a prime number."

It seems, then, not unlikely that, if Diophantus did not succeed in

giving the complete sufficient and necessary condition stated by
Fermat, he made an approximation to it

;
and he certainly knew

that no number of the form 4# + 3 could be the sum of two

squares
l
.

(b) On members which are the sum of three squares.

In the problem v. 1 1 a condition is stated by Diophantus re-

specting the form of a number which, added to three parts of unity,

makes each of them square. If a be this number, clearly 30+1
must be divisible into three squares.

Respecting the number a Diophantus says,
"
It must not be 2

or any multiple of 8 increased by 2."

That is, a number of the form 2^n + 7 cannot be the sum of three

squares. Now the factor 3 of 24 is irrelevant here, for with respect

to three this number is of the form ^m + I, and this, so far as 3 is

concerned, might be a square or the sum of two or three squares.

Hence we may neglect the factor 3 in 24^.

We must therefore credit Diophantus with the knowledge of

the passage.
"
Imitari statueram bonos grammaticos hoc loco, quorum (ut aiunt) est

multa nescire. Ego vero nescio heic non multa, sed paene omnia. Quid enim (ut

reliqua taceam) est ju^re 6 diirXafflwv O.VTOV op fju> a etc., quae causae huius irpoffSiopifffj,ov,

quae processus? immo qui processus, quae operatic, quae solutio?"

Nesselmann discusses an attempt made by Schulz to correct the text, and himself

suggests Atiyre TOV SurXaaiova avTov &pi9/j.bv fj.ovdSi /j.eiova ^xet") & perpetrat vvo TIVOS

irp&Tov dpi6fwv. But this ignores frfpos rtraprov and is not satisfactory.

Hankel, however (Gesch. d. Math. p. 169), says:
" Ich zweifele nicht, dass die

von den Msscr. arg entstellte Determination so zu lesen ist : Aei 5^ rbv diS6/j.evov n^re

wepiffffbv elva.i, /tijre ^bv oiirXafftova. O.VTOV api8fj.bv fiovASi d (Jifl^ova /j.fTptiff6ai vir6 TOV

irp&Tov dpiOfiov, 6s &v fi.ovA.dt. d ndfav fyv V-tpos rtrapTov." This correction seems a

decidedly probable one. Here the words ptpos T^raprov find a place ; and, secondly,

the repetition of fj.ov&di d fj.d$wv might well confuse a copyist. TOV for TOV is of course

natural enough ; Nesselmann reads rtvos for TOV.

Tannery, improving on Hankel, reads A 5r; TOV $i56u.fvov yu^re wepurffov elvai, //.ijre

trip SurXturioj' avrov Kal fj.ov6.8i M'? /xeiforo fjierpeiffOai viro TOV irp&TOv dpiB/J.ov <ov 6

fiovddt, fdq. fj.eifav> ?x?7 M^pos T^Taprov t,
" the given number must not be odd, and twice

it plus i must not be measured by any prime number which, when increased by i, is

divisible by 4."
1 A discussion of the text and a suggestion as to the considerations which may have

led to the formulation of the condition will be found in Jacobi,
" Ueber die Kenntnisse

des Diophantus von der Zusammensetzung der Zahlen" (Berliner Monatsberichte, 1847;

Gesammelte Werke, vil., 1891, pp. 332-344).
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the fact that no nttmber of the form 8 + 7 can be the sum of
three squares*.

This condition is true, but does not include all the numbers

which cannot be the sum of three squares, for it is not true that

all numbers which are not of the form 8# + 7 are made up of three

squares. Even Bachet remarked that the number a might not be

of the form 32^ + 9, or a number of the form 96^ + 28 cannot be

the sum of three squares.

Fermat gives the conditions to which a must be subject thus 2
.

Write down two geometrical series (common ratio of each 4),

the first and second series beginning respectively with i, 8,

i 4 16 64 256 1024 4096

8 32 128 512 2048 8192 32768;

then a must not be (i) any number obtained by taking twice any
term of the upper series and adding all the preceding terms, or

(2) the number found by adding to the numbers so obtained any

multiple of the corresponding term of the second series.

Thus a must not be

128/^+2.16 + 4+1 =128/^ + 37,

512^+ 2.64+ 16 + 4+ i = 512^+ 149,

and so on, where k = o or any integer.

That is, since i + 4 + 4
2 + . . . + 4

n-1 = (4" i
),
a cannot be either

therefore 30 + I cannot be of the form 4" (24^ + 7) or 4
n
(8 + 7).

Again, there are other problems, e.g. v. 10 and V. 20, in which,

though conditions are necessary for the possibility of solution, none

are mentioned
;
but suitable assumptions are tacitly made, without

explanation. It does not follow, from the omission to state the

conditions, that Diophantus was ignorant of even the minutest

points connected with them
; as, however, we have no definite

statements, we must be content to remain in doubt.

1
Legendre proved (Zahlentheorie, tr. Maser, I. p. 386), that numbers of this form are

the only odd numbers which are not divisible into three squares.
3 Note on Diophantus v. 1 1 .
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(c) Composition of numbers as the sum offour squares.

Every number is either a square or the sum of two, three or four

squares. This well-known theorem, enunciated by Fermat 1

,
and

proved by Lagrange
2

(who followed up results obtained by Euler)

shows at once that any number can be divided into four squares

either integral or fractional, since any square number can be divided

into two other squares, integral or fractional. We have now to look

for indications in the Arithmetica as to how far Diophantus was

acquainted with the properties of numbers as the sum of four squares.

Unfortunately, it is impossible to decide this question with anything
like certainty. There are three problems, iv. 29, 30 and V. 14, in

which it is required to divide a number into four squares, and from

the absence of mention of any condition to which the number must

conform, considering that in both cases where a number is to

be divided into three or two squares, v. 1 1 and V. 9, he does

state a condition, we should probably be right in inferring that

Diophantus was aware, at least empirically, that any number could

be divided into four squares. That he was able to prove the

theorem scientifically it would be rash to assert. But we may
at least be certain that Diophantus came as near to the proof of

it as did Bachet, who takes all the natural numbers up to 120

and finds by trial that all of them can actually be expressed

as squares, or as the sum of two, three or four squares in whole

numbers. So much we maybe sure that Diophantus could do, and

hence he might have empirically satisfied himself that it is possible

to divide any number into four squares, integral or fractional, even

if he could not give a rigorous mathematical demonstration of the

general theorem.

1 See note on Diophantus IV. 29 ; cf. also section I. of the Supplement.
z " Demonstration d'un theoreme d'arithmetique

"
in Nouveaux Memoires de PAcad.

royale des sciences de Berlin, annee 1770, Berlin 1772, pp. 123-133= Oeuvres de Lagrange,
in. pp. 187-201 ; cf. Wertheim's account of the proof in his Diophantus, pp. 324-330.



CHAPTER VI

THE PLACE OF DIOPHANTUS

IN algebra, as in geometry, the Greeks learnt the beginnings
from the Egyptians. Familiarity on the part of the Greeks with

Egyptian methods of calculation is well attested. Thus (i) Psellus

in the letter published by Tannery
1

speaks of "the method
of arithmetical calculations used by the Egyptians, by which

problems in analysis are handled
"

(77 /car' Alyvrrrtovf rtov

aptdfjbwv /j,edoBo<i, 81 779 oiKovofj^eirat ra Kara rrjv dva\VTiicr)v

7rpo/3A,?7/4aTa) ;
the details which he goes on to give respecting

the technical terms for different kinds of numbers, including the

powers of the unknown quantity, in use among the Egyptians
are doubtless taken from Anatolius. (2) The scholiast to Plato's

Charmides 165 E may be drawing on the same source when he

says that "
parts of \oyia-TtKij (the science of calculation) are the

so-called Greek and Egyptian methods in multiplications and

divisions, and the additions and subtractions of fractions....The
aim of it all is the service of common life and utility for contracts,

though it seems to deal with things of sense as if they were

perfect or abstract." (3) Plato himself, in the Laws 2
, says that

free-born boys should, as is the practice in Egypt, learn, side by
side with reading, simple mathematical calculations adapted to their

age, which should be put into a form such as to give amusement

and pleasure as well as instruction
; e.g. there should be different

distributions of such things as apples, garlands, etc., different

arrangements of numbers of boys in contests of boxing or wrestling,

illustrations by bowls of different metals, gold, copper, silver, etc.,

and simple problems of calculation of mixtures
;

all of which are

useful in military and civil life and "
in any case make men more

useful to themselves and more wide-awake."

1
Dioph. II. pp. 37-42.

2
Laws, VII. 819 A-c.
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The Egyptian calculations here in point (apart from their

method of writing and calculating in fractions, which differed

from that of the Greeks in that the Greeks worked with ordinary

fractions, whereas the Egyptians separated fractions into sums

of submultiples, with the exception of | which was not decomposed)
are the ^^-calculations. Hau, meaning a heap, is the term used

to denote the unknown quantity, and the calculations in terms

of it are equivalent to the solutions of simple equations with one

unknown quantity
1
. Examples from the Papyrus Rhind 2 corre-

spond to the following equations:

=
19,

(jr+f*)-i (* + !*) =10-

Before leaving the Egyptians, it is right to mention their

anticipation, though in an elementary form, of a favourite method

of Diophantus, that of the
"
false supposition

"
or "

regula falsi
"

as it is sometimes called. An arbitrary assumption is made as to

the value of the unknown, and the value is afterwards corrected

by a comparison of the result of substituting the wrong value in

the original expression with the actual fact. Two instances

mentioned by Cantor 3 may be given. The first, taken from the

Papyrus Rhind, is the problem of dividing 100 loaves among five

persons in numbers forming an arithmetical progression and such

that one-seventh of the sum of the first three shares is equal to

the sum of the other two. If a + qd, a + ^d, a+2d, a + d, a

are the shares, we have

or d = $^a.

Ahmes merely says, without explanation,
" make the difference,

as it is, 5^," and then, assuming a=i, writes the series 23, 17^,

12, 6^, i. The addition of these gives 60, and 100 is if times 60.

Ahmes says simply "multiply if times" and thus gets the correct

values 38^, 294, 20, iof , if. The second instance (taken from

the Berlin Papyrus 6619) is the solution of the equations

x*+y*=ioo,
x \y = i : f,

or y = x.

1 For a complete account of the subject the reader is referred to Moritz Cantor's

Geschichte der Mathematik, I 3 . Chapter II., especially pp. 74-81.
2
Eisenlohr, Ein mathematisches Handbuch der alten Agypter {Papyrus Rhind des

British Museum) , Leipzig, 1877.
3 Geschichte der Math. I3 . pp. 78-9 and p. 95.
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x is first assumed to be I, and x*+jP is then found to be 25/16.
In order to make 100, 25/16 has to be multiplied by 64 or S2

. The
true value of x is therefore 8 times I, or 8.

The simple equations solved in the Papyrus Rhind are just the

kind of equations of which we find numerous examples in the

arithmetical epigrams included in the Greek Anthology. Most
of these appear under the name of Metrodorus, a grammarian,
who probably lived about the time of the Emperors Anastasius I.

(491-518 A.D.) and Justin I. (518-527 A.D.). They were obviously

only collected by Metrodorus, from ancient as well as more recent

sources
;
none of them can with certainty be attributed to Metro-

dorus himself. Many of the epigrams (46 in number) lead to

simple equations, with one unknown, of the type of the hau-

equations, and several of them are problems of dividing a number
of apples or nuts among a certain number of persons, that is

to say, the very type of problem alluded to by Plato. For

example, a number of apples has to be determined such that, if

four persons out of six receive one-third, one-eighth, one-fourth

and one-fifth respectively of the total number of apples, while the

fifth person receives ten apples, there remains one apple as the

share of the sixth person, i.e.

We are reminded of Plato's allusion to problems about bowls

(<f>id\at) of different metals by two problems (Antliol. Palat. XIV.

12 and 50) in which the weights of bowls have to be found. We
can now understand the allusions of Proclus 1 and the scholiast

on Charmides 165 E to p,rj\lTac and (f>ia\iTai dpt0(j,oi, the adjectives

being respectively formed from p.fi\ovy
an apple, and </>taXi;, a

bowl. It is clear from Plato's allusions that the origin of such

simple algebraical problems dates back, at least, to the fifth

century B.C.

I have not thought it worth while to reproduce at length the

problems contained in the Anthology
2
, but the following is a

classification of them, (i) Twenty-three are simple equations

containing one unknown and of the type shown above
;

one of

these is the epigram on the age of Diophantus and incidents

in his life (XIV. 126). (2) Twelve more are easy simultaneous

1
Proclus, Comment, on Eucl. /., ed. Friedlein, p. 40, 5.

2
They are printed in Greek, with the scholia, in Tannery's edition of Diophantus

(il. pp. 43-72 and x), and they are included in Wertheim's German translation of

Diophantus, pp. 331-343.

H. D. 8
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equations containing two unknowns, and of the same sort as

Diophantus I. 1-6
; or, of course, they can be reduced to a simple

equation with one unknown by means of an easy elimination.

One other (XIV. 51) gives simultaneous equations in three un-

knowns

and one (XIV. 49) gives four equations in four unknowns

With these may be compared Diophantus I. 16-21. (3) Six more

are problems of the usual type about the filling of vessels by pipes :

e.g. (XIV. 130) one pipe fills the vessel in one day, a second in two,

and a third in three
;
how long will all three running together

take to fill it? Another about brickmakers (XIV. 136) is of the

same sort

The Anthology contains (4) two indeterminate equations of

the first degree which can be solved in positive integers in an

infinite number of ways (xiv. 48 and 144); the first is a distribution

of apples satisfying the equation x ^y =y, where y is not less

than 2, and the original number of apples is $x ;
the second leads

to the following three equations between four unknown quantities :

the general solution of which is x = 4^, y = ,
x

l
= $k, y^ = 2k. These

very equations, made however determinate by assuming that

x+y = xl +j/i
= 100, are solved in Diophantus I. 12.

We mentioned above the problem in the Anthology (XIV. 49)

leading to the following four simultaneous linear equations with

four unknown quantities,

x +y = a,

x + ti = c,

The general solution of any number of simultaneous linear

equations of this type with the same number of unknown quantities

was given by Thymaridas, apparently of Paros, and an early

Pythagorean. He gave a rule, e</>oSo<?, or method of attack (as
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lamblichus 1

,
our informant, calls it) which must have been widely

known, inasmuch as it was called by the name of the e-n-avdrffia,
" flower" or "bloom," of Thymaridas. The rule is stated in general

terms, but, though no symbols are used, the content is pure

algebra. Thymaridas, too, distinguishes between what he calls

dopia-Tov, the undefined or unknown quantity, and the atpio-pevov,

the definite or known, therein anticipating the very phrase of

Diophantus, TrXijOos povdSow dopta-rov, "an undefined number of

units," by which he describes his dpidfjios or x. Thymaridas' rule,

though obscurely expressed, states in effect that, if there are n

equations between n unknown quantities ;r, xlt x^...xn_l of the

following form,

x*+ ... + x

then the solution is given by

2

lamblichus goes on to show that other types of equations can

be reduced to this, so that the rule does not leave us in the lurch

(ov Tra/aeX/cet) in those cases either. Thus we can reduce to

Thymaridas' form the indeterminate problem represented by the

following three linear equations between four unknown quantities :

b(u +y\

From the first equation we obtain

x +y + z + u = (a + i) (z + u),

from which it follows that, if x, y, z, u are all to be integers,

x+y + z + u must contain a+i as a factor. Similarly it must

contain b + I and c + I as factors.

Suppose now that x+y+z+u = (a+ i)(+ i)fc+ i). There-

fore, by means of the first equation, we get

(x+y} i + =(+ !)(*+!)(*+ I),

1
lamblichus, / Nicomachi arithmeticam introductionem (ed. Pistelli), pp. 62,

18-68, 26.

82
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or

Similarly x+ z = b (c + i)(a+ i),

x + u = c(a+ i)(b+ i),

and the equations are in the form to which Thymaridas' rule is

applicable.

Hence, by that rule,

_ a(b+ i)(V+i) +...-(<?+ I) (b 4-

In order to ensure that x may always be integral, if is only

necessary to assume

x+y+z + u = 2(a+ i)(b + i)(c+ i).

The factor 2 is of course determined by the number of un-

knowns. If there are n unknowns, the factor to be put in place

of 2 is n 2.

lamblichus has the particular case corresponding to a = 2,

b = 3, c = 4. He goes on to apply the method to the equations

^0"M),
for the case where //= f , mjn = |, pjq = f .

Enough has been said to show that Diophantus was not the

inventor of Algebra. Nor was he the first to solve indeterminate

problems of the second degree.

Take, first, the problem of dividing a square number into two

squares (Diophantus II. 8), or of finding a right-angled triangle

with sides in rational numbers. This problem was, as we learn

from Proclus 1

,
attributed to Pythagoras, who was credited with

the discovery of a general formula for finding such triangles which

may be shown thus :

- i\
2

_
/;?

2
H

\ 2

where n is an odd number. Plato again is credited, according
to the same authority, with another formula of the same sort,

Comment, on Euclid, Book /. pp. 428, 7 sqq.



THE PLACE OF DIOPHANTUS 117

Both these formulae are readily connected with the geometrical

proposition in Eucl. II. 5, the algebraical equivalent of which may
be stated as

The content of Euclid Book II. is beyond doubt Pythagorean, and

this way of stating the proposition quoted could not have escaped
the Pythagoreans. If we put I for b and the square of any odd

number for a, we have the Pythagorean formula
; and, if we put

a = 211*, b = 2, we obtain Plato's formula. Euclid finds a more

general formula in Book X. (Lemma following X. 28). Starting
with numbers u = c + b and v = c b, so that

uv = cz - P,

Euclid points out that, in order that uv may be a square, u and v

must be " similar plane numbers "
or numbers of the form mnfP,

mngr*. Substituting we have

But the problem of finding right-angled triangles in rational

numbers was not the only indeterminate problem of the second

degree solved by the Pythagoreans. They solved the equation

2x*-y*= i
.

in such a way as to prove that there are an infinite number of

solutions of that equation in integral numbers. The Pythagoreans
used for this purpose the system of "side-" and "diagonal-"
numbers 1

,
afterwards fully described by Theon of Smyrna

2
. We

begin with unity as both the first "side" and the first
"
diagonal";

thus
#1= i, d^= i.

We then form (a2 ,
d2), (a3 ,

d3 ), etc., in accordance with the following

law,

and so on. Theori states, with reference to these numbers, the

general proposition that

dn
2 =2an

*
i,

and observes that (i) the signs alternate as successive d's and a's

1 See Proclus, In Platonis rempublicam commtntarii (Teubner, Leipzig), Vol. II.

c. 27, p. 27, 11-18.

2 Theon of Smyrna, ed. Hiller, pp. 43, 44.
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are taken, d? 2a? being equal to i, d?-2a? equal to+i,

d? - 2#3
2
equal to - I and so on, (2) the sum of the squares of all

the d's will be double of the sum of the squares of all the a's. For

the purpose of (2) the number of successive terms in each series,

if finite, must of course be even. The algebraical proof is easy.

and so on, while df 2a? = I. Proclus tells us that the property
was proved by means of the theorems of Eucl. II. 9, 10, which

are indeed equivalent to

(2.X +j)
2 - 2 (X +_X)

2 = 2*2 -f.

Diophantus does not particularly mention the indeterminate

equation 2x* i =j2
,

still less does he mention "side-" and

"diagonal-" numbers. But from the Lemma to VI. 15 (quoted

above, p. 69) it is clear that he knew how to find any number of

solutions when one is known. Thus, seeing that x= i, /= i is

one solution, he would put

2 (i + xf i = a square

= (px- i)
2

say,

whence # = (4 + 2/)/(/
2 -

2).

Take the value p=2, and we have ^ = 4, or ;tr+i=5; and

2 . 5
2

i = 49 = 7
2
. Putting x + 5 in place of x, we find a still

higher value, and so on.

In a recent paper Heiberg has published and translated, and

Zeuthen has commented on, still further Greek examples of in-

determinate analysis
1
. They come from the Constantinople MS.

(probably of I2th c.) from which Schone edited the Metrica of

Heron. The first two of the thirteen problems had been published
before (though in a less complete form)

2
;
the others are new.

The first bids us find two rectangles such that the perimeter
of the second is three times that of the first, and the area of the

first is three times that of the second (the first of the two con-

ditions is, by some accident, omitted in the text). The number 3

1 Bibliotheca Mathematica, vm3 , 1907-8, pp. 118-134.
2 Hultsch's Heron, Geeponicat 78, 79. The two problems are discussed by Cantor,

Agrimensoren, p. 62, and Tannery, Mem. dc la soc. des sc. de Bordeaux, IV2 , 1882.
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is of course only an illustration, and the problem is equivalent to

the solution of the equations

xy = n.uv }

the solution given in the text is equivalent to

x = 2n*-i, y = 2n* )

u = n (4>/
s

2), v = n)

Zeuthen suggests that this solution may have been arrived at

thus. As the problem is indeterminate, it would be natural to

make trial of some hypothesis, e.g. to put v = n. It would follow

from the first equation in (i) that u is a multiple of n, say nz. We
have then

x +y =1+2,
xy = ns

2,

whence xy = n3
(x +y) n3

,

or (x - n3
) (y

- 3
)
= n3

(n
3 - i ).

An obvious solution of this is

x n3 = n3
i, y 1? = n3

.

The second problem is equivalent to the solution of the

equations

I ........................(I);
xy = n . uv)

and the solution given in the text is

i ..................... (2),

In this case trial may have been made of the assumption

v = nx, y = 2
#,

when the first equation in (i) would give

(-i);r = (
2

-i)/,,

a solution of which is x= w2
i, u = n i.

The fifth problem is of interest in one respect. We are asked

to find a right-angled triangle (in rational numbers) with area

of 5 feet. We are told to multiply 5 by some square containing 6

as a factor, e.g. 36. This makes 180, and this is the area of the

triangle (9, ^b, til). Dividing each side by 6, we have the triangle

required. The author, then, is aware of the fact that the area

of a right-angled triangle with sides in whole numbers is divisible
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by 6. If we take the Euclidean formula for a right-angled triangle,

thus making the sides

m2 #2 m* 4- #2

a . mn. a .
-

,
a .

,

2 2

where a is any number, and m, n are numbers which are both odd

or both even, the area is

2
mn (m n} (m + n)

4

and, as a matter of fact, the numerator mn(m n)(m + n) is

divisible by 24, as was proved later (for another purpose) by
Leonardo of Pisa 1

.

' There is no sign that Diophantus was aware

of the proposition ;
this however may be due to the fact that he

does not trouble as to whether his solutions are integral, but is

satisfied with rational results.

The last four problems (numbered 10 to 13) are of great

interest. They are different particular cases of one problem, that

of finding a rational right-angled triangle such that the numerical

sum of its area and all its three sides is a given number. The

author's solution depends on the following formulae, where a, b

are the perpendiculars, and c the hypotenuse, of a right-angled

triangle, 6" its area, r the radius of its inscribed circle, and

S = rs = \ab> r+ s = a + b, c = s r.

(The proof of these formulae by means of the usual figure, that

used by Heron to prove his formula for the area of a triangle

in terms of its sides, is easy.)

Solving the first two equations, in order to find a and b, we

have

a] r + s + <J{(r + s)
2 -

8rs]

which formula is actually used by the author for finding a and b.

The method employed is to take the sum of the area and the three

sides 5 + 2s, separated into its two obvious factors s (r + 2), to put

s(r+2) = A (the given number), and then to separate A into

suitable factors to which s and r+ 2 may be equated. They must

obviously be such that sr, the area, is divisible by 6. To take the

first example where A is equal to 280 : the possible factors are

1
Scritti, ed. B. Boncompagni, n. (1862), p. 264. Cf. Cantor, Gesch. d. Math. iilt

p. 40.



THE PLACE OF DIOPHANTUS 121

2x140, 4x70, 5x56, 7x40, 8x35, 10x28, 14x20. The
suitable factors in this case are r + 2 = 8, s = 35, because r is then

equal to 6, and rs is a multiple of 6.

The author then says that

a =
6 + 35- v1(6+35)

2 -8. 6.35)^41- i ^ 2Q>
2 2

and ^=35-6 = 29.

The triangle is therefore (20, 21, 29) in this case. The

triangles found in the other cases, by the same method, are

(9, 40, 41), (8, 15, 17) and (9, 12, 15).

Unfortunately there is no guide to the date of the problems

just given. The form, however, cannot be that in which the

discoverer or discoverers of the methods indicated originally

explained those methods. The probability is that the original

formulation of the most important of the problems belongs to

the period between Euclid and Diophantus. This supposition best

agrees with the fact that the problems include nothing taken from

the great collection in the Arithmetica. On the other hand, it is

strange that none of the seven problems above mentioned is found

in Diophantus. The five of them which relate to rational right-

angled triangles might well have been included by him
;
thus he

finds rational triangles such that the area plus or minus one of the

perpendiculars is a given number, but not the rational triangle

which has a given area
;
and he finds rational triangles such that

the area plus or minus the sum of two sides is a given number,

but not the rational triangle such that the sum of the area and

the three sides is a given number. The omitted problems might,

it is true, have come in the lost Books
; but, on the other hand,

Book VI. is the place where we should have expected to find

them. Nor do we find in the above problems any trace of

Diophantus' peculiar methods.

Lastly, the famous Cattle-Problem attributed to Archimedes 1

has to be added to the indeterminate problems propounded before

Diophantus' time. According to the heading prefixed to the

epigram, it was communicated by Archimedes to the mathe-

maticians at Alexandria in a letter to Eratosthenes. The scholiast

1
Archimedes, ed. Heiberg, Vol. II. p. 450 sqq.
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on Charmides 165 E also refers to the problem "called by Archi-

medes the Cattle-Problem." Krumbiegel, who discussed the

arguments for and against the attribution to Archimedes, con-

cluded apparently that, while the epigram can hardly have been

written by Archimedes in its present form, it is possible, nay

probable, that the problem was in substance originated by
Archimedes 1

. Hultsch 2 has a most attractive suggestion as to

the occasion of it. It is known that Apollonius in his WKVTOKIOV

had calculated an approximation to the value of TT closer than

that of Archimedes, and he must therefore, have worked out more

difficult multiplications than those contained in the Measurement

of a circle. Also the other work of Apollonius on the multipli-

cation of large numbers, which is partly preserved in Pappus, was

inspired by the Sand-reckoner of Archimedes
; and, though we

need not exactly regard the treatise of Apollonius as polemical,

yet it did in fact constitute a criticism of the earlier book. That

Archimedes should then reply with a problem involving such a

manipulation of immense numbers as would be difficult even for

Apollonius is not altogether outside the bounds of possibility. And
there is an unmistakable vein of satire in the opening words of

the epigram,
"
Compute the number of the oxen of the Sun, giving

thy mind thereto, if thou hast a share of wisdom," in the tran-

sition from the first part to the second, where it is said that

ability to solve the first part would entitle one to be regarded
as " not unknowing nor unskilled in numbers, but still not yet

to be counted among the wise," and again in the. last lines.

Hultsch concludes that in any case the problem is not much
later than the time of Archimedes and dates from the beginning
of the second century B.C. at the latest.

I have reproduced elsewhere 3
,
from Amthor, details regarding

the solution of the problem, and I need do little more than state

here its algebraical equivalent. Eight unknown quantities have

to be found, namely, the numbers of bulls and cows respectively

of each of four colours (I use large letters for the bulls and small

letters for the cows). The first part of the problem connects the

eight unknowns by seven simple equations ;
the second part adds

two more conditions.

1
Zeitschrift fur Math. n. Physik (Hist. lilt. Abtheilung), xxv. (1880), p. 121 sq.

Amthor added (p. 1 53 sq. ) a discussion of the problem itself.

2 Art. Archimedes in Pauly-Wissowa's Real-Encyclopcidie, n. i, pp. 534, 535.
3 The Works of Archimedes, pp. 319-326.
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First part of Problem.

(I) W=($ + ^X+Y .................. (i),

.................. (2),

.................. (3).

(II) w =
(i + i)(.T + *) ........ .......... (4),

) .................. (5),

+0 .................. (7)-

Second part.

W+X = a. square ........................... (8),

F + /? = a triangular number ............ (9).

The solution of the first part gives

W= 10366482 n, w = 7206360 n,

X = 74605 14 n, x = 4893246 n,

Y= 4149387 w, y= 5439213 ,

Z= 7358060 ,
-s: = 35 1 5820 ,

where is an integer. The solution given by the scholiast 1 corre-

sponds to n = 80.

The complete problem would not be unmanageable but for the

condition (8). If for this were substituted the requirement that

W+ X shall be merely a product of two unequal factors (" Wurm's

problem "), the solution in the least possible numbers is

W= 1217263415886, w = 846 1924 10280,

x= 876035935422, *= 574579625058,

F= 487233469701, 7 = 638688708099,

Z= 864005479380, # = 412838131860.

But, if we include condition (8) and first of all find a solution

satisfying the conditions (i) to (8), we have then, in order to

satisfy condition (9), to solve the equation

q(q+\)J2 = 5 1285802909803 . f

If we multiply by 8, and put

2q + I = /, 2 . 4657 | = it,

we have the equation

^-1 = 2.3.7. 1 1. 29. 353.
2
,

or f-- 4729494
2 = i.

1

Archimedes, ed. Heiberg, Vol. II. pp. 454, 455.
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The value of W would be a number containing 206545

digits.

Such are the very few and scattered particulars which we

possess of problems similar to those of Diophantus solved or

propounded before his time. They show indeed that the kind of

problem was not invented by him, but on the other hand they
show little or no trace of anything like his characteristic alge-

braical methods. In the circumstances, and in default of discovery
of fresh documents, the question how much of his work represents

original contributions of his own to the subject must remain a

matter of pure speculation. It is pretty obvious that one man
could not have been the author of all the problems contained in

the six Books. There are also inequalities in the work
;
some

problems are very inferior in interest to the remainder, and some

solutions may be assumed to be reproduced from other writers

of less calibre, since they reveal none of the mastery of the subject

which Diophantus possessed. Again, it seems probable that the

problem V. 30, which is exceptionally in epigrammatic form, was

taken from someone else. The Arithmetica was no doubt a

collection, much in the same sense as Euclid's Elements were. And
this may be one reason why so little trace remains of earlier

labours in the same field. It is well known that Euclid's Elements

so entirely superseded the works of the earlier writers of Elements

(Hippocrates of Chios, Leon and Theudius) and of the great

contributors to the body of the Elements, Theaetetus and Eudoxus,
that those works have disappeared almost entirely. So no doubt

would Diophantus' work supersede, and have the effect of con-

signing to oblivion, any earlier collections of problems of the

same kind. But, if it was a compilation, we cannot doubt that

it was a compilation in the best sense, therein resembling Euclid's

Elements; it was a compilation by one who was a master of the

subject, who took account of and assimilated all the best that had

been written upon it, arranged the whole of the available material

in due and progressive order, but also added much of his own, not

only in the form of new problems but also (and even more) in the

mode of treatment, the development of more general methods, and

so on.

It is perhaps desirable to add a few words on the previous

history of the theory of polygonal numbers. The theory certainly

goes back to Pythagoras and the earliest Pythagoreans. The

triangle came first, being obtained by first taking I, then adding
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2 to it, then 3 to the sum
;
each successive number would be

represented by the proper number of dots, and, when each number
was represented by that number of dots arranged symmetrically
under the row representing the preceding number, the triangular
form would be apparent to the eye, thus :

etc.

Next came the Pythagorean discovery of the fact that a similar

successive addition of odd numbers produced
successive square numbers, the odd numbers

being on that account called gnomons, and again

the process was shown by dots arranged to re-

present squares. The accompanying figure shows

the successive squares and gnomons.

Following triangles and squares came the figured numbers

in which the "gnomons," or the numbers added to make one

number of a given form into the next larger of the same form,

were numbers in arithmetical progression starting from I, but with

common difference 3, 4, 5, etc., instead of I, 2. Thus, if the

common difference is 3, so that the successive numbers added to

i are 4, 7, 10, etc., the number is a pentagonal number, if the

common difference is 4 and the gnomons 5, 9, 1 3, etc., the number

is a hexagonal number, and so on. Hence the law that the

common difference of the gnomons in the case of a -gon is

11 2.

Perhaps these facts had already been arrived at by Philippus

of Opus (4th c. B.C.), who is said to have written a work on

polygonal numbers 1
. Next Speusippus, nephew and successor of

Plato, wrote on Pythagorean Numbers, and a fragment of his

book survives
2
,

in which linear numbers, polygonal numbers,

triangles and pyramids are spoken of: a fact which leaves no

room for doubt as to the Pythagorean origin of all these con-

ceptions
3

.

Hypsicles, who wrote about 170 B.C., is twice mentioned by

Diophantus as the author of a "
definition

"
of a polygonal number,

1
Bioypd(poi, Vitarum scriptores Graeci minores, ed. Westermann, 1845, p. 448.

2
Theologumena arithmcticae (ed. Ast), 1817, pp. 61, 62 ; the passage is translated with

notes by Tannery, Pour Phistoire de la science hellene, pp. 386-390.
3
Cantor, Geschichte der Mathematik, I 3 , p. 249.
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which is even quoted verbatim 1
. The definition does not mention

any polygonal number beyond the pentagonal ;
but indeed this

was unnecessary : the facts about the triangle, the square and the

pentagon were sufficient to enable Hypsicles to pass to a general

conclusion. The definition amounts to saying that the nth #-gon

(i counting as the first) is

* (2 +(-!) (a -2)}.

Theon of Smyrna
2

,
Nicomachus 3 and lamblichus 4 all devote

some space to polygonal numbers. The first two, who flourished

about 100 A.D., were earlier than Diophantus, and are accordingly

of interest here. Besides a description of the successive polygonal

numbers, Theon gives the theorem that two successive triangular

numbers added together give a square. That is,

(n-i)n n(n+ i)_~ 7~.
2 2

The fact is of course clear if we divide a square
into two triangles as in the figure.

Nicomachus gave various rules for transforming triangles into

squares, squares into pentagons, etc.

1. If we put two consecutive triangles together we get a square

(as in Theon's theorem).

2. A pentagon is obtained from a square by adding to it a

triangle the side of which is i less than that of the square;

similarly a hexagon from a pentagon by adding a triangle the side

of which is i less than that of the pentagon ;
and so on.

In fact,

\n {2 + (n -i)(a- 2)} +i (-i) =
J [2 + (n -i){(a + i) -2}].

Next Nicomachus sets out the first triangles, squares, pentagons,

hexagons and heptagons in a diagram thus :

1
Dioph. i. pp. 470-472-

2
Expositio rerum mathematicanim ad legendum Platonem utilium, ed. Hiller,

pp. 31-40.
8 Introductio arithmetica, ed. Hoche, II. 8-12, pp. 87-99.
4 In Nicomachi arithmeticam introd., ed. Pistelli, pp. 58-61, 68-72.
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3. Each polygon is equal to the polygon immediately above

it in the diagram plus the triangle with i less in its side, i.e. the

triangle in the preceding column.

4. The vertical columns are arithmetical progressions, the

common difference of which is the triangle in the preceding
column.

But Plutarch, a contemporary of Nicomachus, mentioned

another method of transforming triangles into squares: Every

triangular number taken eight times and then increased by I gives
a square*. That is,

Diophantus generalised this proposition into his theorem for

transforming any polygonal number into a square.

IfP be a polygonal number, a the number of angles,

8P (a
-

2) + (a
-

4)
2 = a square.

He deduces rules for finding a polygonal number when the

side and the number of angles are given, and for finding the side

when the number and the number of its angles are given. These

fine results and the fragment of the difficult problem of finding
the number of ways in which any given number can be a polygonal
number no doubt represent part of the original contributions by
Diophantus to the theory of that class of numbers.

1 Plat, quaest. V. 2, 4, 1003 F.





THE ARITHMETICA

BOOK I

PRELIMINARY

Dedication.
"
Knowing, my most esteemed friend Dionysius, that you are

anxious to learn how to investigate problems in numbers, I have

tried, beginning from the foundations on which the science is

built up, to set forth to you the nature and power subsisting in

numbers.
"
Perhaps the subject will appear rather difficult, inasmuch as

it is not yet familiar (beginners are, as a rule, too ready to despair
of success) ;

but you, with the impulse of your enthusiasm and

the benefit of my teaching, will find it easy to master
;

for

eagerness to learn, when seconded by instruction, ensures rapid

progress."

After the remark that "
all numbers are made up of some

multitude of units, so that it is manifest that their formation is

subject to no limit," Diophantus proceeds to define what he calls

the different "species" of numbers, and to describe the abbreviative

signs used to denote them. These "
species

"
are, in the first

place, the various powers of the unknown quantity from the second

to the sixth inclusive, the unknown quantity itself, and units.

Definitions.

A square (=x-) is StW/u? (" power "), and its sign is a J with Y

superposed, thus J r
.

A cube (=x 3

) is icvfios, and its sign KY
.

A square-square (=#*) is 8vvafj,oBvva^i<;
1

,
and its sign is J r

J.

A square-cube (=x
5

) is 8vva/j,6Kvj3o<;, and its sign JATr.

A cube-cube (= x 6
) is tcvftoicvfios, and its sign KYK.

1 The term Swa/uodiVa/us was already used by Heron (Metrica, ed. Schone, p. 48,

n, 19) for the fourth power of a side of a triangle.

H. D. Q
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"
It is," Diophantus observes,

" from the addition, subtraction

or multiplication of these numbers or from the ratios which they

bear to one another or to their own sides respectively that most

arithmetical problems are formed"
;
and "each of these numbers...

is recognised as an element in arithmetical inquiry."
" But the number which has none of these characteristics, but

merely has in it an indeterminate multitude of units (7rX?}$o<?

fi.ovd8ci)v dopia-Tov) is called dpiOpos,
' numberI and its sign is

9 [=*]."
"And there is also another sign denoting that which is in-

variable in determinate numbers, namely the unit, the sign being

M with o superposed, thus M."

Next follow the definitions of the reciprocals, the names of

which are derived from the names of the corresponding species

themselves.

Thus

from dpid/jLos [x~\ we derive the term dpidpoarov [= I/*]

[= i/^
2

]

[= I/*
3

]

8vvafj,o8vvafj,i<; \x*\ SwaftoSwa/jLoa-Tov [= I/*"
4
]

Suva/jioicvfios \X
5

~\ Suva/Motcvftoo-TOv [= I/^
5

]

/eu/3o/ei/3o<? [x
6

] KvftoKvftoaTov [= I/*"
6

],

and each of these has the same sign as the corresponding original

species, but with a distinguishing mark which Tannery writes in

the form x above the line to the right.

Thus JJ'X = l
j
x\ just as 7

* =
.

Sign of Subtraction (minus}.
" A minus multiplied by a minus makes a plus^ ; a minus

multiplied by a plus makes a minus ; and the sign of a minus is a

truncated ^f turned upside down, thus fa."

Diophantus proceeds :

"
It is well that one who is beginning

this study should have acquired practice in the addition, subtraction

and multiplication of the various species. He should know how
to add positive and negative terms with different coefficients to

1 The literal rendering would be "A wanting multiplied by a wanting makes a

forthcoming." The word corresponding to minus is Xetfis ("wanting"): when it is

used exactly as our minus is, it is in the dative Xetyei, but there is some doubt whether

Diophantus himself used this form (cf. p. 44 above). For the probable explanation of

the sign, see pp. 42-44. The word for "forthcoming" is Uirap!;is, from VTT&PXU, to exist.

Negative terms are XeiTrovra eldrj, and positive virdpxoi>ra.
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131

other terms \ themselves either positive or likewise partly positive

and partly negative, and how to subtract from a combination of

positive and negative terms other terms either positive or likewise

partly positive and partly negative.
"
Next, if a problem leads to an equation in which certain

terms are equal to terms of the same species but with different

coefficients, it will be necessary to subtract like from like on both

sides, until one term is found equal to one term. If by chance

there are on either side or on both sides any negative terms, it will

be necessary to add the negative terms on both sides, until the

terms on both sides are positive, and then again to subtract like

from like until one term only is left on each side.

" This should be the object aimed at in framing the hypotheses
of propositions, that is to say, to reduce the equations, if possible,

until one term is left equal to one term
;
but I will show you later

how, in the case also where two terms are left equal to one term, such

a problem is solved"

Diophantus concludes by explaining that, in arranging the

mass of material at his disposal, he tried to distinguish, so far as

possible, the different types of problems, and, especially in the

elementary portion at the beginning, to make the more simple lead

up to the more complex, in due order, such an arrangement being
calculated to make the beginner's course easier and to fix what

he learns in his memory. The treatise, he adds, has been divided

into thirteen Books.

PROBLEMS

1. To divide a given number into two having a given
difference.

Given number 100, given difference 40.

Lesser number required x. Therefore

2^ + 4.0= loo,

^=30.
The required numbers are 70, 30.

2. To divide a given number into two having a given ratio.

Given number 60, given ratio 3:1.
Two numbers x, ^x. Therefore ;r= 15.

The numbers are 45, 15.

1
eTSos, "species," is the word used by Diophantus throughout.

92
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3. To divide a given number into two numbers such that one

is a given ratio of the other plus a given difference 1
.

Given number 80, ratio 3:1, difference 4.

Lesser number x. Therefore the larger is "$x f 4, and

4* -f 4 = 80, so that x = 19.

The numbers are 61, 19.

4. To find two numbers in a given ratio and such that their

difference is also given.

Given ratio 5:1, given difference 20.

Numbers $x, x. Therefore ^x= 20, x= 5, and

the numbers are 25, 5.

5. To divide a given number into two numbers such that given

fractions (not the same) of each number when added together

produce a given number.

Necessary condition. The latter given number must be such

that it lies between the numbers arising when the given fractions

respectively are taken of the first given number.

First given number 100, given fractions \ and ^, given
sum of fractions 30.

Second part $x. Therefore first part = 3 (30 x).

Hence 90 + 2x 100, and x = 5.

The required parts are 75, 25.

6. To divide a given number into two numbers such that a

given fraction of the first exceeds a given fraction of the other

by a given number.

Necessary condition. The latter number must be less than that

which arises when that fraction of the first number is taken which

exceeds the other fraction.

Given number 100, given fractions and respectively,

given excess 20.

Second part 6x. Therefore the first part is 4 (;r + 20).

Hence lox + 80 = 100, x = 2, and

the parts are 88, 12.

1

Literally "to divide an assigned number into two in a given ratio and difference (ev

Xctycf) Kal inrepoxs r-ij 5o0ei<rij)." The phrase means the same, though it is not so clear, as

Euclid's expression (Data, Def. 1 1 and passim) boOivrt pelfav 17 ev \kryif. According to

Euclid's definition a magnitude is greater than a magnitude "by a given amount (more)

than in a (certain) ratio" when the remainder of the first magnitude, after subtracting

tlie given amount, has the said ratio to the second magnitude. This means that, if x, y
are the magnitudes, d the given amount, and k the ratio, x-d=ky or
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7. From the same (required) number to subtract two given
numbers so as to make the remainders have to one another a

given ratio.

Given numbers 100, 20, given ratio 3:1.

Required number x. Therefore x 20 = 3 (x 100), and

x = 140.

8. To two given numbers to add the same (required) number so

as to make the resulting numbers have to one another a given ratio.

Necessary condition. The given ratio must be less than the

ratio which the greater of the given numbers has to the lesser.

Given numbers 100, 20, given ratio 3:1.

Required number x. Therefore ~$x + 60 =x + 100, and

9. From two given numbers to subtract the same (required)

number so as to make the remainders have to one another a given

ratio.

Necessary condition. The given ratio must be greater than the

ratio which the greater of the given numbers has to the lesser.

Given numbers 20, 100, given ratio 6 : I.

Required number x. Therefore 120 6x = 100 x, and

10. Given two numbers, to add to the lesser and to subtract

from the greater the same (required) number so as to make the

sum in the first case have to the difference in the second case

a given ratio.

Given numbers 20, 100, given ratio 4:1.

Required numbers. Therefore (20 + x} = 4(100-.*'), and

;r= 7 6.

11. Given two numbers, to add the first to, and subtract the

second from, the same (required) number, so as to make the

resulting numbers have to one another a given ratio.

Given numbers 20, 100, given ratio 3:1.

Required number x. Therefore yc 30x3 =x+ 20, and

x = 160.

12. To divide a given number twice into two numbers such

that the first of the first pair may have to the first of the second

pair a given ratio, and also the second of the second pair to the

second of the first pair another given ratio.
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Given number 100, ratio of greater of first parts to lesser

of second 2:1, and ratio of greater of second parts

to lesser of first parts 3:1.
x lesser of second parts.

The parts then are

-<5r)
and

IOO2X) X
\

Therefore 300 - $x= 100, x= 40, and

the parts are (80, 20), (60, 40).

1 3. To divide a given number thrice into two numbers such that

one of the first pair has to one of the second pair a. given ratio,

the second of the second pair to one of the third pair another

given ratio, and the second of the third pair to the second of the

first pair another given ratio.

Given number 100, ratio of greater of first parts to lesser

of second 3:1, of greater of second to lesser of

third 2:1, and of greater of third to lesser of

first 4: i.

x lesser of third parts.

Therefore greater of second parts = 2x, lesser of second
= loo- 2x, greater of first = 300 - 6>.

Hence lesser of first = 6x 200, so that greater of third

= 24*-
- 800.

Therefore 2$x 800 = 100, x = 36, and

the respective divisions are (84, 16), (72, 28), (64, 36).

14. To find two numbers such that their product has to their

sum a given ratio. [One is arbitrarily assumed.]

Necessary condition. The assumed value of one of the two

must be greater than the number representing the ratio 1
.

Ratio $ : i, x one of the numbers, 12 the other (> 3).

Therefore 1 2x $x + 36, x = 4, and

the numbers are 4, 12.

15. To find two numbers such that each after receiving from

the other a given number may bear to the remainder a given

ratio.

Let the first receive 30 from the second, the ratio being
then 2:1, and the second 50 from the first, the ratio

being then 3:1; take x + 30 for the second.

1
Literally "the number homonymous with the given ratio."
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Therefore the first = 2x 30, and

(x + 80) = 3 (2x - 80).

Thus x = 64, and

the numbers are 98, 94.

16. To find three numbers such that the sums of pairs are

given numbers.

Necessary condition. Half the sum of the three given numbers

must be greater than any one of them singly.

Let (i) + (2) = 20, (2) + (3)
=

30, (3) + (i) = 40.

x the sum of the three. Therefore the numbers are

x 30, x 40, x 20.

The sum x = *x go, and x = 45.

The numbers are 15, 5, 25.

17. To find four numbers such that the sums of all sets of three

are given numbers.

Necessary condition. One-third of the sum of the four must be

greater than any one singly.

Sums of threes 22, 24, 27, 20 respectively.

x the sum of all four. Therefore the numbers are

X22, * 24, X-27, X2O.
Therefore ^x 93 x, x = 3 1, and

the numbers are 9, 7, 4, n.

1 8. To find three numbers such that the sum of any pair

exceeds the third by a given number.

Given excesses 20, 30, 40.

2.x the sum of all three.

We have (i) + (2)
=

(3) + 20.

Adding (3) to each side, we have : twice (3) + 20= 2x, and

(3) = *- 10.

Similarly the numbers (i) and (2) are ^15, x - 20

respectively.

Therefore yc 45 = 2x, ^=45, and

the numbers are 30, 25, 35.

\OtJierwise thus 1
. As before, if the third number (3) is x,

(l) + (2)=;r+20.

Next, if we add the equations

(I) + (2) -( 3 )
= 20)

(2) + (3)-(l)= 3OJ'

1 Tannery attributes the alternative solution of I. 18 (as of I. 19) to an old scholiast.
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we have (2) = | (20 + 30) = 25.

Hence (i)=.r-5.

Lastly .u) + (i)-(2) = 40,

or 2r-5-25 = 4o.

Therefore x= 35.

The numbers are 30, 25, 35.]

19* To find four numbers such that the sum of any three

exceeds the fourth by a given number.

Necessary condition. Half the sum of the four given differences

must be greater than any one of them.

Given differences 20, 30, 40, 50.

2r the sum of the required numbers. Therefore the

numbers are

-r 15, x 20, x 25, x 10.

Therefore 4-r 70 = 2jr, and x 35.

The numbers are 20, 15, 10, 25.

\Otkeronse tk*s\ If the fourth number (4) is x,

(I) + (2) + (3) = X + 20.

Put (2) + (3) equal to half the sum of the two excesses 20

and 30, i.e. 25 [this is equivalent to adding the two

equations

It follows by subtraction that (I) = JT- 5.

Next we add the equations beginning with (2) and (3)

respectively, and we obtain

(3) + (4)
= 1 (30 -I- 40) = 35,

so that (3) = 35~^
It follows that (2) = jr- ia '

Lastly, since (4)+ (i) + (2)-(3) = 50,

y- I 5-(35--r>=50, and ^ = 25.

The numbers are accordingly 20, 15, 10, 25.]

2Oi To divide a given number into three numbers such that the

sum of each extreme and the mean has to the other extreme a

given ratio.

Given number ioo; and let (i) + (2)= 3 .(3) and (2) + (3)
= 4-(0-

19 (as of I. 1 8) to an old scholiast.
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x the third number. Thus the sum of the first and second

=
3^r, and the sum of the three =^x= 100.

Hence x = 25, and the sum of the first two = 75.

Let y be the first
1
. Therefore sum of second and third

The required parts are 20, 55, 25.

21. To find three numbers such that the greatest exceeds the

middle number by a given fraction of the least, the middle exceeds

the least by a given fraction of the greatest, but the least exceeds

a given fraction of the middle number by a given number.

Necessary condition. The middle number must exceed the

least by such a fraction of the greatest that, if its denominator 2 be

multiplied into the excess of the middle number over the least, the

coefficient of x in the product is greater than the coefficient of

x in the expression for the middle number resulting from the

assumptions made 3
.

Suppose greatest exceeds middle by \ of least, middle

exceeds least by \ of greatest, and least exceeds

\ of middle by 10. [Diophantus assumes the three

given fractions or submultiples to be one and the

same.]
x + 10 the least. Therefore middle =

3-r, and greatest
= 6x - 30.

Hence, lastly, 6x - 30 yc= (x + 10),

or x+ 10 = 93- 90, and x= 12^.

The numbers are 45, yj\, 22^.

1 As already remarked (p. 52), Diophantus does not use a second symbol for the

second unknown, but makes d/M0/xos do duty for the second as well as for the first.

2
"Denominator," literally the "number homonymous with the fraction," i.e. the

denominator on the assumption that the fraction is, or is expressed as, a submultiple.
3 Wertheim points out that this condition has reference, not to the general solution of

the problem, but to the general applicability of the particular procedure which Diophantus

adopts in his solution. Suppose X, Y, Z required such that X- Y=Z\m, Y-Z=X\n,
Z-a=Y\p. Diophantus assumes Z=x+ a, whence Y=px, X=n(j>x-x-a). The
condition states that np n >p. If we solve for x by substituting the values of X, Y, Z
in the first equation, we in fact obtain

m {(np-n-#)x-na}=x + a,

or x (mnp - mn - mp -
i) = a (tnn+ i).

In order that the value of x may be positive, we must have mnp>mn + mp -f- 1,

that is,

np>n+p +

or (if m, , / are positive integers) np>n +/.
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[Another solution 1
.

Necessary condition. The given fraction of the greatest must

be such that, when it is added to the least, the coefficient of x in

the sum is less than the coefficient of x in the expression for the

middle number resulting from the assumptions made 2
.

Let the least number be x + 10, as before, and the given

fraction \ ;
the middle number is therefore $x.

Next, greatest = middle + (least)
= $%x + 3$.

Lastly, 3* = x + i o + (fa + 3i)

Therefore x = \2\, and

the numbers are, as before, 45, 37^, 22^.]

22. To find three numbers such that, if each give to the next

following a given fraction of itself, in order, the results after each

has given and taken may be equal.

Let first give ^ of itself to second, second \ of itself to

third, third of itself to first.

Assume first to be a number of x's divisible by 3, say

$x, and second to be a number of units divisible by

4, say 4.

Therefore second after giving and taking becomes -*"+ 3.

Hence the first also after giving and taking must become

;tr+3; it must therefore have taken x + $2x, or

3-;r; ^-x must therefore be of third, or third

= I$-5*
Lastly, 15 -5*- (3 -#)+!=*+ 3,

or 134^ = ^ + 3, and x=2.
The numbers are 6, 4, 5.

23. To find four numbers such that, if each give to the next

following a given fraction of itself, the results may all be equal.

Let first give \ of itself to second, second \ of itself

to third, third of itself to fourth, and fourth of

itself to first.

Assume first to be a number of ;r's divisible by 3, say yc,

and second to be a number of units divisible by 4,

say 4.

1
Tannery attributes this alternative solution, like the others of the same kind, to an

ancient scholiast.

2 Wertheim observes that the scholiast's necessary condition comes to the same thing
as Diophantus' own.
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The second after giving and taking becomes x + 3.

Therefore first after giving x to second and receiving
of fourth =x+ 3 ;

therefore fourth

= 6(^+3 2x}= i8-6.tr.

But fourth after giving $x to first and receiving \ of

third =-*- + 3 ;
therefore third =301: -60.

Lastly, third after giving 6x i? to fourth and receiving
I from second = .*+ 3.

That is, 24^ 47=;tr+3, and *= f$.

The numbers are therefore J^, 4, J^f, J^;
or, after multiplying by the common de-

nominator, 150, 92, 120, 114.

24. To find three numbers such that, if each receives a given
fraction of the sum of the other two, the results are all equal.

Let first receive of (second + third), second \ of

(third + first), and third i of (first + second).

Assume first =x, and for convenience' sake (rov irpo^Lpov

eveicev) take for sum of second and third a number of

units divisible by 3, say 3.

Then sum of the three = x-\- 3,

and first -I-
1 (second + third) = x+ I .

Therefore second + ^ (third + first) = x+ I
;

hence 3 times second + sum of all = 4^ + 4,

and therefore second = x+ %.

Lastly, third + { (first + second) = x + I,

or 4 times third + sum of all = 5^+5,
and third =x + ^.

Therefore x + (x + ) + (x+ )
= x + 3,

and ^ = T!-

The numbers, after multiplying by the common

denominator, are 13, 17, 19.

25. To find four numbers such that, if each receives a given

fraction of the sum of the remaining three, the four results are

equal.

Let first receive of the rest, second 1 of the rest,

third i of rest, and fourth of rest.

Assume first to be x and sum of rest a number of units

divisible by 3, say 3.

Then sum of all =x+ 3.

Now first + (second -f third 4 fourth) = x + I .



i4o THE ARITHMETICA

Therefore second + | (third + fourth + first) =^+ I,

whence 3 times second + sum of all = 4.^ + 4,

and therefore second = x + \.

Similarly third =.* + ,

and fourth = ;r+f.

Adding, we have 4^r + f = ^+3,
and x== $-

The numbers, after multiplying by a common

denominator, are 47, 77, 92, 101.

26. Given two numbers, to find a third number which, when

multiplied into the given numbers respectively, makes one product
a square and the other the side of that square.

Given numbers 200, 5 ; required number x.

Therefore 2OOtr= ^r
2
,
and

.27. To find two numbers such that their sum and product are

given numbers.

Necessary condition. The square of half the sum must exceed

the product by a square number, ecm Se roOro irXao-fiaTiicbv
1
.

Given sum 20, given product 96.

2x the difference of the required numbers.

Therefore the numbers are io+x, 10 x.

Hence ioo-x z = g6.

Therefore x=2, and

the required numbers are 12, 8.

28. To find two numbers such that their sum and the sum of

their squares are given numbers.

Necessary condition. Double the sum of their squares must

exceed the square of their sum by a square, ecrrt Se KOI TOVTO

1 There has been controversy as to the meaning of this difficult phrase. Xylander,

Bachet, Cossali, Schulz, Nesselmann, all discuss it. Xylander translated it by "effictum

aliunde." Bachet of course rejects this, and, while leaving the word untranslated,

maintains that it has an active rather than a passive signification ; it is, he says, not

something "made up" (effictum) but something "a quo aliud quippiam effingi et

plasmari potest,"
" from which something else can be made up," and this he interprets as

meaning that from the conditions to which the term is applied, combined with the

solutions of the respective problems in which it occurs, the rules for solving mixed

quadratics can be evolved. Of the two views I think Xylander's is nearer the mark.

Tr\afffj.aTiK6v should apparently mean "of the nature of a ir\dfffj.a," just as 5pa/uariK<5j>

means something connected with or suitable for a drama
;
and ir\d<r/j.a means something
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Given sum 20, given sum of squares 208.

Difference 2x.

Therefore the numbers are lo+x, IQ-X.

Thus 200 + 2x* = 208, and x = 2.

The required numbers are 12, 8.

29. To find two numbers such that their sum and the difference

of their squares are given numbers.

Given sum 20, given difference of squares 80.

Difference 2x.

The numbers are therefore lO + x, 10 x.

Hence (lo +xf- (io-xf= 80,

or 401: = 80, and x= 2.

The required numbers are 12, 8.

30. To find two numbers such that their difference and product
are given numbers.

Necessary condition. Four times the product together with

the square of the difference must give a square, eo-ri Se real rovro

Given difference 4, given product 96.

2x the sum of the required numbers.

Therefore the numbers are x+2, x 2\ accordingly
x* 4 = 96, and x= 10.

The required numbers are 12, 8.

31. To find two numbers in a given ratio and such that the

sum of their squares also has to their sum a given ratio.

Given ratios 3 : I and 5 : I respectively.

Lesser number x.

Therefore \ox- = 5 . 4-r, whence x = 2, and

the numbers are 2, 6.

32. To find two numbers in a given ratio and such that the

sum of their squares also has to their difference a given ratio.

Given ratios 3 : I and 10 : I.

Lesser number x, which is then found from the equation
ior2 = 10. ix.

Hence* =2, and

the numbers are 2, 6.

"formed" or "moulded." Hence the expression would seem to mean "this is of the

nature of a formula," with the implication that the formula is not difficult to make up
or discover. Nesselmann, like Xylancler, gives it much this meaning, translating it "das

lasst sich aber bewerkstelligen." Tannery translates irXaoytart/roi' by "formativum."
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33. To find two numbers in a given ratio and such that the

difference of their squares also has to their sum a given ratio.

Given ratios 3 : i and 6 : I.

Lesser number x, which is found to be 3.

The numbers are 3, 9.

34. To find two numbers in a given ratio and such that the

difference of their squares also has to their difference a given

ratio.

Given ratios 3 : I and 12 : I.

Lesser number x, which is found to be 3.

The numbers are 3, 9.

Similarly by the same method can be found two numbers in

a given ratio and (i) such that their product is to their sum in a

given ratio, or (2) such that their product is to their difference in a

given ratio.

35. To find two numbers in a given ratio and such that the

square of the lesser also has to the greater a given ratio.

Given ratios 3 : i and 6 : i respectively.

Lesser numbers, which is found to be 18.

The numbers are 18, 54.

36. To find two numbers in a given ratio and such that the

square of the lesser also has to the lesser itself a given ratio.

Given ratios 3 : i and 6 : i .

Lesser number x, which is found to be 6.

The numbers are 6, 18.

37. To find two numbers in a given ratio and such that the

square of the lesser also has to the sum of both a given ratio.

Given ratios 3 : i and 2:1.

Lesser number x, which is found to be 8.

The numbers are 8, 24.

38. To find two numbers in a given ratio and such that the

square of the lesser also has to the difference between them a

given ratio.

Given ratios 3 : i and 6 : i.

Lesser number x, which is found to be 1 2.

The numbers are 12, 36.
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'Similarly can be found two numbers in a given ratio and

(1) such that the square of the greater also has to the

lesser a given ratio, or

(2) such that the square of the greater also has to the

greater itself a given ratio, or

(3) such that the square of the greater also has to the sum

or difference of the two a given ratio.

39. Given two numbers, to find a third such that the sums of

the several pairs multiplied by the corresponding third number

give three numbers in arithmetical progression.

Given numbers 3, 5.

Required number x.

The three products are therefore 3^ + 15, 5^+15, &r.

Now 3-r + 1 5 must be either the middle or the least of

the three, and $x+i$ either the greatest or the

middle.

(i) 5^+15 greatest, 3^+15 least.

Therefore *>x + 1 5 + 3-*" + 1 5
= 2 . &tr, and

(2) 5^+15 greatest, 3.^+15 middle.

Therefore (5*+ 15) -(3^+ 15) = 3*+ IS -&r, and

*-?
(3) %x greatest, yc + 1 5 least.

Therefore &r + 3* + 1 5
= 2 ($x + 1 5), and

BOOK II

[The first five problems of this Book are mere repetitions of problems in

Book I. They probably found their way into the text from some ancient

commentary. In each case the ratio of one required number to the other

is assumed to be 2 : i. The enunciations only are here given.]

1. To find two numbers such that their sum is to the sum of

their squares in a given ratio [cf. i. 31].

2. To find two numbers such that their difference is to the

difference of their squares in a given ratio [cf. I. 34].
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3. To find two numbers such that their product is to their sum
or their difference in a given ratio [cf. I. 34].

4. To find two numbers such that the sum of their squares is to

their difference in a given ratio [cf. I. 32].

5. To find two numbers such that the difference of their squares
is to their sum in a given ratio [cf. I. 33].

6 1
. To find two numbers having a given difference and such

that the difference of their squares exceeds their difference by a

given number.

Necessary condition. The square of their difference must be

less than the sum of the said difference and the given excess

of the difference of the squares over the difference of the

numbers.

Difference of numbers 2, the other given number 20.

Lesser number x. Therefore x + 2 is the greater, and

4^+4 = 22.

Therefore x = 4^, and

the numbers are 4^, 6.

7
1

. To find two numbers such that the difference of their

squares is greater by a given number than a given ratio of

their difference-. [Difference assumed.]

Necessary condition. The given ratio being 3:1, the square of

the difference of the numbers must be less than the sum of three

times that difference and the given number.

Given number 10, difference of required numbers 2.

Lesser number x. Therefore the greater is x+ 2, and

4^ + 4 = 3.2+ 10.

Therefore x = 3, and

the numbers are 3, 5.

8. To divide a given square number into two squares
3
.

1 The problems n. 6, 7 also are considered by Tannery to be interpolated from some

ancient commentary.
2 Here we have the identical phrase used in Euclid's Data (cf. note on p. 132 above) :

the difference of the squares is rfjs vTrepoxw avr&v doOtvTi. apid/nf /j.flfai> rj ev \6yif,

literally "greater than their difference by a given number (more) than in a (given) ratio,"

by which is meant "greater by a given number than a given proportion or fraction

of their difference."

3 It is to this proposition that Fermat appended his famous note in which he

enunciates what is known as. the "great theorem" of Fermat. The text of the note is

as follows :

"On the other hand it is impossible to separate a cube into two cubes, or a
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Given square number 16.

x* one of the required squares. Therefore \6-x* must

be equal to a square.

Take a square of the form 1
(inx 4)*, m being any

integer and 4 the number which is the square root

of 1 6, e.g. take (2^ 4)*, and equate it to 16 x*.

Therefore 4x*\6x+i6=\(:>x\
or 5** = \6x, and x =

g-.

The required squares are therefore
y-, ^.

9. To divide a given number which is the sum of two squares
into two other squares

2
.

biquadrate into two biquadrates, or generally any power except a square into two pcnvers
with the same exponent. I have discovered a truly marvellous proof of this, which

however the margin is not large enough to contain."

Did Fermat really possess a proof of the general proposition that xm+ym= z l* cannot

be solved in rational numbers where m is any number >2? As Wertheim says, one

is tempted to doubt this, seeing that, in spite of the labours of Euler, Lejeune-Dirichlet,
Kummer and others, a general proof has not even yet been discovered. Euler proved
the theorem for m= $ and / =

4, Dirichlet for *w = 5, and Kummer, by means of the

higher theory of numbers, produced a proof which only excludes certain particular

values of m, which values are rare, at all events among the smaller values of m ; thus

there is no value of m below 100 for which Kummer's proof does not serve. (I take

these facts from Weber and Wellstein's Encyclopddie der Elementar-Mathematik, I2 ,

p. 284, where a proof of the formula for m= + is given.)

It appears that the Gottingen Academy of Sciences has recently awarded a prize

to Dr A. Wieferich, of Miinster, for a proof that the equation xp +yp= gp cannot be

solved in terms of positive integers not multiples of p, if 2P - 2 is not divisible by p*.
" This surprisingly simple result represents the first advance, since the time of Kummer,
in the proof of the last Fermat theorem

"
(Bulletin of the American Mathematical Society,

February 1910).

Fermat says ("Relation des nouvelles decouvertes en la science des nombres,"

August 1659, Oeuvres, II. p. 433) that he proved that no cube is divisible into two cutesby

a variety of his method of infinite diminution (descente infinie or indefinie) different from

that which he employed for other negative or positive theorems ; as to the other cases, see

Supplement, sections I., n.
1
Diophantus' words are: "I form the square from any number of dp<.0/j.oi minus

as many units as there are in the side of 16." It is implied throughout that m must

be so chosen that the result may be rational in Diophantus' sense, i.e. rational and

positive.
2
Diophantus' solution is substantially the same as Euler's (Algebra, tr. Hewlett,

Part n. Art. 219), though the latter is expressed more generally.

Required to find x, y such that

If x /, then y $ g.

Put therefore -r=/+/te, y=g-qz.

H. D.
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Given number 13 = 22 + 3
2
.

As the roots of these squares are 2, 3, take (x + 2)* as the

first square and (mx 3)
2 as the second (where m is

an integer), say (2.x 3)*.

Therefore (x* + 4-*" + 4) + (^x* + 9-1 2x} = 1 3,

or 5-r
2 + 13 -8x= 13.

Therefore x = f ,
and

the required squares are ~
t

-.

10. To find two square numbers having a given difference.

Given difference 60.

Side of one number x, side of the other x plus any
number the square of which is not greater than 60,

say 3.

Therefore (* + 3)
2 - ;r

2 = 60
;

x=%\, and

the required squares are 72^, 132^.

1 1. To add the same (required) number to two given numbers

so as to make each of them a square.

(i) Given numbers 2, 3 ; required numbers.
X -4- 2 1

Therefore \ must both be squares.

This is called a double-equation (StTrXoiVo-n;?).

To solve it, take the difference between the two expressions

and resolve it into two factors
1

;
in this case let us say

4, i-

Then take either

(a) the square of half the difference between thesefactors

and equate it to the lesser expression,

or (b) the square of half the sum and equate it to the

greater.

hence iffz+/V -
igqz + </

2s2= o,

and =3az2#

so that *=^ l

j:\f', y=

in which we may substitute all possible numbers for/, q.
1
Here, as always, the factors chosen must be suitable factors, i.e. such as will lead to

a "rational
"

result, in Diophantus' sense.
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In this case (a) the square of half the difference is %-.

Therefore x+ 2 = -2^, and x=
g,

the squares being^5
-, Jj/.

Taking (b) the square of half the sum, we have x+ 3 = -^,
which gives the same result.

(2) To avoid a double-equation
1
,

first find a number which when added to 2, or to 3,

gives a square.

Take e.g. the number x~ 2, which when added to 2 gives
a square.

Therefore, since this same number added to 3 gives a

square,

x* + i = a square = (x 4)", say,

the number of units in the expression (in this case 4)

being so taken that the solution may give x- > 2.

Therefore jr = -1
g
5
-, and

the required number is ^, as before.

12. To subtract the same (required) number from two given
numbers so as to make both remainders squares.

Given numbers 9, 21.

Assuming 9 x* as the required number, we satisfy one

condition, and the other requires that 12 +x* shall be

a square.

Assume as the side of this square x minus some number

the square of which > 12, say 4.

Therefore (x 4)-=\2 + xz
,

and x=\.
The required number is then 8f .

[Diophantus does not reduce to lowest terms, but says
x = | and then subtracts |-|~from 9 or ^^.]

1 This is the same procedure as that of Euler, who does not use double-equations.

Euler (Algebra, tr. Hewlett, Part II. Art. 214) solves the problem

Suppose x+ 4=

therefore jr=/
2
~4, and x + 7=

Suppose that /
therefore / = (3

-

Thus X (Q-22

or, if we take a fraction r[s instead of q,

x= (gs*
-



148 THE ARITHMETICA

13. From the same (required) number to subtract two given

numbers so as to make both remainders squares.

Given numbers 6, 7.

(i) Let x be the required number.

Therefore
x ~

I are both squares.

The difference is I, which is the product of, say, 2 and

and, by the rule for solving a double equation,

(2) To avoid a double-equation, seek a number which exceeds

a square by 6, say x* + 6.

Therefore x* I must also be a square = (x 2)
2
, say.

Therefore x = f ,
and

the required number is ^.

14. To divide a given number into two parts and to find a

square which when added to each of the two parts gives a square

number.

Given number 20.

Take two numbers 1 such that the sum of their squares

< 20, say 2, 3.

1
Diophantus implies here that the two numbers chosen must be such that the sum of

their squares <2O. Tannery pointed out (Bibliotheca Matkematua, 1887, p. 103) that

this is not so and that the condition actually necessary to ensure a real solution in

Diophantus' sense is something different. We have to solve the equations

x+y=a, 22 -t-jc= 2
, 22 +_y= z>

2
.

We assume u = z + m, z> = 2 + , and, eliminating x, y, we obtain

i (m + n)

In order that z may be positive, we must have n& + 2< a
;
but z need not be positive

in order to satisfy the above equations. What is really required is that x, y shall both be

positive.

Now from the above we derive

Solving for x, y, we have

_ (m -
n) (a + 2tnn)

m (a + mn - 2
) _ n (a + mn - m2

)

m+n ' m+n

If, of the two assumed numbers, m>n, the condition necessary to secure that x, y shall

both be positive is a + mn > m*.
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Add x to each and square.

We then have

and, if , [ are respectively subtracted, the remainders

are the same square.

Let then x* be the required square, and we have only to

make
. I tne required parts of 20.

Thus 10* +13 = 20,

and X = IQ.

The required parts are then (?, ^Y and

the required square is .

15. To divide a given number into two parts and to find a

square which, when each part is respectively subtracted from it,

gives a square.

Given number 20.

Take (x -I- m? for the required square \ where m* is not

greater than 20,

e.g. take (x + 2)*.

This leaves a square if either AX + 4 } . ,

> is subtracted.
or 2;r + 3J

Let these then be the parts of 20.

1 Here again the implied condition, namely that m- is not greater than 10, is not

necessary ; the condition necessary for a real solution is something different.

The equations to be solved are x+y=a, z^ x u^, z*y=iP.
Diophantus here puts ( + m)* for zz, so that, if x=im$+ m?, the second equation is

satisfied. Now ( + w)
2 -y must also be a square, and if this square is equal to

( +m -
)*,

say, we must have

Therefore, since x+y=a,

i (m + n) +mz+ *mn -n*=a,

a m? + w2 imn
whence = --

;
-

r
-

,

2 (/// + )

and it follows that

_ m (a
- mn + 8

) _ (a
- mn + m2

)

m+ tt
' y~ m + n

'

If m>n, it is necessary, in order that x, y may both be positive, that a + 2 > mn,
which is the true condition for a real solution.
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Therefore 6x + 7 = 20, and x =
J^-.

The required parts are therefore
f^-, ^ j

,
and

the required square is ~.

1 6. To find two numbers in a given ratio and such that each

when added to an assigned square gives a square.

Given square 9, given ratio 3:1.

If we take a square of side (mx + 3) and subtract 9
from it, the remainder may be taken as one of the

numbers required.

Take, e.g., (x + 3)* 9, or x* + 6x, for the lesser number.

Therefore 3^
2+ i8x is the greater number, and 3-r

2+ 18^+9
must be made a square = (2.x 3)

2
, say.

Therefore x = 30, and

the required numbers are 1080, 3240.

17. To find three numbers such that, if each give to the next

following a given fraction of itself and a given number besides,

the results after each has given and taken may be equal
1
.

First gives to second \ of itself + 6, second to third of

itself + 7, third to first j of itself + 8.

Let first and second be 5^ 6x respectively.

When second has taken x + 6 from first it becomes 7^ + 6,

and when it has given x + J to third it becomes

6x-\.
But first when it has given x + 6 to second becomes

^x 6
;
and this too when it has taken \ of third

+ 8 must become 6x i .

Therefore f of third + 8 = 2x + 5, and

third = i^x 21.

Next, third after receiving of second + 7 and giving \ of

itself + 8 must become 6x I.

Therefore I ye 19 = 6x I, and x = .

The required numbers are ^-,
-

,
.

1
Tannery is of opinion that the problems II. 17 and 18 have crept into the text

from an ancient commentary to Book I. to which they would more appropriately belong.

Cf. I- 22, 23.
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1 8. To divide a given number into three parts satisfying the

conditions of the preceding problem
1
.

Given number 80.

Let first give to second of itself + 6, second to third

of itself + 7, and third to first f of itself + 8.

[What follows in the text is not a solution of the problem
but an alternative solution of the preceding. The
first two numbers are assumed to be ^x and 12, and

the numbers found are ^^, - -.1
19 19 19

J

19. To find three squares such that the difference between the

greatest and the middle has to the difference between the middle

and the least a given ratio.

Given ratio 3:1.
Assume the least square = x3

,
the middle =x* + 2x -\- I.

Therefore the greatest = x> + 8x + 4 = square = (x + 3>
2
, say.

Thus;tr=2, and

the squares are 30^, 12^, 6.

20. To find two numbers such that the square of either added

to the other gives a square
2

.

1

Though the solution is not given in the text, it is easily obtained from the general

solutjon of the preceding problem, which again, at least with our notation, is easy.

Let us assume, with Wertheim, that '-the numbers required in n. 17 are 5.*, 6y, "jz.

Then by the conditions of the problem

4x-6+ z+8= ;,y-7 + x+ 6 =6z-8+y + 7,

from which two equations we can find x, z in terms ofy.

In fact *=(20>-i8)/i9 and z=(\-jy- 3)/i9,

and the general solution is

In his solution Diophantus assumes x=y, whence y .

Now, to solve II. 18, we have only to equate the sum of the three expressions to 80,

and so findy.

We have jgaj
y(i>. 26 + 6. 19 + 7. 17) -5. 18-7. 3 = 80. 19, ?=

-^'>
and the required numbers are

944Q 9786 9814

363
'

363
'

363
'

2 Euler (Algebra, Part n. Art. 239) solves this problem more generally thus.

Required to find x, y such that x3 +y and jp + x are squares.

If we begin by supposing x2 +y=J?, so that y=f^-x^, and then substitute the value

ofy in terms of x in the second expression, we must have

p\
_ 2/2jc2 + x* + x= square.

But, as this is difficult to solve, let us suppose instead that

*2 +y=(P~ *)
2=? ~

tfx
-- J:2

,



152 THE ARITHMETICA

Assume for the numbers x, 2x + I, which by their form

satisfy one condition.

The other condition gives

4^r
2 + $x+ I = square = (2x 2)

2
, say.

Therefore x = -^ ,
and

the numbers are
,

.

21. To find two numbers such that the square of either minus

the other number gives a square.

x+i, 2x+i are assumed, satisfying one condition.

The other condition gives

4^2 + yc = square = gx
2
, say.

Therefore x = f ,
and

the numbers are -, .

22. To find two numbers such that the square of either added

to the sum of both gives a square.

Assume x, x + I for the numbers. Thus one condition is

satisfied.

It remains that

xz + 4*+2 = square = (x 2)
2

, say.

Therefore x= ^, and

the numbers are -, -.

[Diophantus has f, Jg-.]

23. To find two numbers such that the square of either minus

the sum of both gives a square.

Assume x, x + i for the numbers, thus satisfying one

condition.

Then x* 2x i = square = (x 3)
2
, say.

Therefore x = 2%, and

the numbers are 2^, 3^.

and that j/
2 + x= (q -yf= q*

-
iqy+y2

.

It follows that

whence
tfq

- i 4/7 - i

Suppose, for example, /=2, ?=3, and we have *= , y= ; and so on. We

must of course choose /, q such that x, y are both positive. Diophantus' solution is

obtained by putting p= -
i, ^=3.
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24. To find two numbers such that either added to the square
of their sum gives a square.

Since x3 + $x*, x2 + Sx* are both squares, let the numbers

be $x
z
,
8x* and their sum x.

Therefore I2ix* = x2
,
whence I ix* = x, and x = Jp

The numbers are therefore , .

25. To find two numbers such that the square of their sum
minus either number gives a square.

If we subtract 7 or 12 from 16, we get a square.

Assume then \2x*
t jx* for the numbers, and i6x- for the

square of their sum.

Hence i$x* = 4*, and x= ^.

The numbers are ^
2

,

**2
.

26. To find two numbers such that their product added to

either gives a square, and the sides of the two squares added

together produce a given number.

Let the given number be 6.

Since x (4* i ) +x is a square, let x, 4* - i be the numbers.

Therefore 4#
2 + 3^1 is a square, and the side of this

square must be 6 2x [since 2x is the side of the

first square and the sum of the sides of the square

is 6].

Since 4^ + 3* i = (6 2x)*,

we have x = fj, and

the numbers are [. .

27 27

27. To find two numbers such that their product minus either

gives a square, and the sides of the two squares so arising when
added together produce a given number.

Let the given number be 5.

Assume 4x+i,x for the numbers, so that one condition

is satisfied.

Also 4*
2 - 3* i = (5 2x)*.

Therefore * = ff, and

the numbers are *|, *^.
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28. To find two square numbers such that their product added

to either gives a square.

Let the numbers 1

bex*,y
2

.

X& -1/2
i

i/2)

Therefore *
2

j-

are both squares.

To make the first expression a square we make x* -f i a

square, putting

x* + i = (x
-

2)
2
, say.

Therefore x = f ,
and x* = ^.

We have now to make ^(y* + i) a square [and y must be

different from x\
Put 9^ + 9 = (3y- 4)

2
> say,

and y = lt.

Therefore the numbers are -%. Q.io' 576

29. To find two square numbers such that their product minus

either gives a square.

Let xz

,y* be the numbers.
..2 ,,,2 _ \

Then * J\ are both squares.xy XT)

A solution of x* I = (a square) is x"1 = ff .

We have now to solve

ff^ -
ft
= a square.

Put ^-i=(j-4)2

,say.

Therefore y = *, and

the numbers are $9 ??.
64 64

30. To find two numbers such that their product + their sum

gives a square.

Now mz + n? 2mti is a square.

Put 2, 3, say, for m, n respectively, and of course

2 2 + 3
2 2 . 2 . 3 is a square.

Assume then product of numbers = (2
2 + 3

2)^2 or 1 3^, and

sum = 2 . 2 . 3^r
2 or 1 2x*.

The product being 13^, let x, lye be the numbers.

Therefore their sum 14^= i2x*, and ^ = ^.

The numbers are therefore L .

1

Diophantus does not use two unknowns, but assumes the numbers to be xz and I

until he has found x. Then he uses the same unknown (x) to find what he had first taken

to be unity, as explained above, p. 52. The same remark applies to the next problem.



BOOK II 155

31. To find two numbers such that their sum is a square and

their product their sum gives a square.
2 . 2m .m = a. square, and (2m)* + m* 2 . 2m .m = a. square.

If m = 2, 4* + 22 2 . 4 . 2 = 36 or 4,

Let then the product of the numbers be (4* + 2f)x* or 2Ora
,

and their sum 2.4.2JT
2 or idr1

,
and take 2-r, lor for

the numbers.

Then \2x= idr2
,
and * = f.

The numbers are -, .

32. To find three numbers such that the square of any one of

them added to the next following gives a square.

Let the first be x, the second 2x -f i, and the third

2(2*+!)+ i or 4* +3, so that two conditions are

satisfied.

The last condition gives (44: + 3)* + x = square = (44: 4^,

say.

Thereforex=^ y and

the numbers are ^,
g,

&.

33. To find three numbers such that the square of any one of

them minus the next following gives a square.

Assume x + i, 2x+ \, $x+ i for the numbers, so that two

conditions are satisfied.

Lastly, 16r2 + "jx
= square = 25*', say,

and x = .

The numbers are ^, ^, ^.999
34. To find three numbers such that the square of any one

added to the sum of all three gives a square.

\^(m n^-\-mn is a square. Take a number separable
into two factors (#/, ) in three ways, say 1 2, which is

the product of (i, 12), (2,6) and (3, 4).

The values then of \ (m n) are 5|, 2, .

Take ^\x, 2x
t ^x for the numbers, and for their sum \2x-.

Therefore &r = 1 2x*, and x = \.

The numbers are
, *, -.

[Diophantus says |, and ^, f , |.]
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35. To find three numbers such that the square of any one

minus the sum of all three gives a square.

{ (m + )}
2 mn is a square, Take, as before, a number

divisible into factors in three ways, as 12.

Let then 6^, 4*, ^\x be the numbers, and their sum \2x*.

Therefore \4x=i2x*, and;r =
f.

The numbers are &, , .

BOOK III

1. To find three numbers such that, if the square of any one

of them be subtracted from the sum of all three, the remainder

is a square
1
.

Take two squares ;r
2

, ^x* ;
the sum is 5;r

2
.

If then we take 5;r
2 as the sum of the three numbers, and

x, 2x as two of them, we satisfy two conditions.

Next divide 5, which is the sum of two squares, into two

other squares ^, J^- [ll. 9], and assume \x for the

third number.

Therefore x + 2x -f \x = 5*
2

,
and x = ^.

The numbers are ^, ^, ~^.

[Diophantus writes -^ for x and T%\, ||g, -^ for the numbers.]

2. To find three numbers such that the square of the sum of

all three added to any one of them gives a square.

Let the square of the sum of all three be x*, and the

numbers ^, 8x*, i$x\
Hence 26;r2 = x, x = -%, and

the numbers are ~y. 7
-
i , ,.

0/0 0/0 OyO

3. To find three numbers such that the square of the sum of

all three minus any one of them gives a square.

Sum of all three 4*", its square i6.r2
,
the numbers "jx*,

I2XZ
, l$X\

Then 34Jtr
2 = 4*, x = &, and

the numbers are J?-, ,
.

1 The fact that the problems III. 1-4 are very like II. 34, 35 makes Tannery suspect

that they have found their way into the text from some ancient commentary.
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4. To find three numbers such that, if the square of their sum
be subtracted from any one of them, the remainder is a square.

Sum x, numbers 2xz
t $x

z
,
lot:2

.

Then 17x* = x, x = -fa,
and

the numbers are ^, J-,
Jj|.

5. To find three numbers such that their sum is a square and
the sum of any pair exceeds the third by a square.

Let the sum of the three be (x+ i)
2

;
let first + second

= third + i, so that third =^ + x ;
let second + third

= first + x*, so that first =x + $.

Therefore second = ^x* + .

It remains that first + third = second + a square.

Therefore 2.x square = 16, say, and x = 8.

The numbers are 8|, 32^, 40.

Ot/ierwise thus\

First find three squares such that their sum is a square.

Find e.g. what square number + 4 + 9 gives a square,

that is, 36 ;

4> 36, 9 are therefore squares with the required property.

Next find three numbers such that the sum of each pair
=

the third + a given number
;
in this case suppose

first + second third = 4,

second + third first = 9,

third + first second = 36.

This problem has already been solved [I. 18].

The numbers are respectively 20, 6, 22^.

1 We should naturally suppose that this alternative solution, like others, was inter-

polated. But we are reluctant to think so because the solution is so elegant that it

can hardly be attributed to a scholiast. If the solution is not genuine, we have here

an illustration of the truth that, however ingenious they are, Diophantus' solutions are not

always the best imaginable (Loria, Le scienze esatte nelf antica Greda, Libro v. pp. 138-9).

In this case the more elegant solution is the alternative one. Generalised, it is as follows.

We have to find JT, y, z so that

-x+y+ z= a. square\
x y+ 2= a square Y ,

x+y-z= a. square)

and also x+y + z= a square.

We have only to equate the first three expressions to squares a2
, P, c* such that

square, ^ say, since the sum of the first three expressions is itself

The solution is then
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6. To find three numbers such that their sum is a square and

the sum of any pair is a square.

Let the sum of all three be x* + 2x+ i, sum of first and

second x2
,
and therefore the third 2.x + I

;
let sum of

second and third be (x - i)
2

.

Therefore the first = ^x, and the second =;r2
<\x.

But first + third = square,

that is, 6x + i = square =121, say.

Therefore x = 20, and

the numbers are 80, 320, 41.

[An alternative solution, obviously interpolated, is practically

identical with the above except that it takes the square 36 as

the value of 6x+i, so that x ^-, and the numbers are ^Q-

_?4o 385 456-,-

36
'

36
'

36
<J

7. To find three numbers in A.P. such that the sum of any

pair gives a square.

First find three square numbers in A.P. and such that half

their sum is greater than any one of them. Let

;r
2
, (x+ i)

2 be the first and second of these
;
therefore

the third is x* + ^x + 2 = (x
-

8)
2

, say.

Therefore x = f$ or f ;

and we may take as the numbers 961, 1681, 2401.

We have now to find three numbers such that the sums

of pairs are the numbers just found.

The sum of the three = a^a = 25211, and

the three numbers are 120^, 840^, 1560^.

8. Given one number, to find three others such that the sum

of any pair of them added to the given number gives a square, and

also the sum of the three added to the given number gives a

square.

Given number 3.

Suppose first required number + second =x"* + 4x+ i,

second + third = x* + 6x + 6,

sum of all three = x* + Sx + 1 3.

Therefore third =^x + 12, second =x*-+2x-6, first =
Also first + third + 3 = a square,

that is, 6x + 22 = square = 100, suppose.

Hence x= 13, and

the numbers are 33, 189, 64.
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9. Given one number, to find three others such that the sum
of any pair of them minus the given number gives a square, and

also the sum of the three minus the given number gives a square.

Given number 3.

Suppose first of required numbers + second = x*+ 3,

second + third =x*+2x+ 4,

sum of the three = x* + ^x+ 7.

Therefore third = 4^+4, second = x* zx, first = 2x+ 3.

Lastly, first + third 3 = 6;r + 4 = a square = 64, say.

Therefore x = 10, and

(23, 80, 44) is a solution.

10. To find three numbers such that the product of any pair

of them added to a given number gives a square.

Let the given number be 12. Take a square (say 25)

and subtract 12. Take the difference (13) for the

product of the first and second numbers, and let these

numbers be 13*, \\x respectively.

Again.subtract 12 from another square, say 16, and let the

difference (4) be the product of the second and third

numbers.

Therefore the third number = 4*.

The third condition gives 52^* 4- 12 = a square; now

52 = 4. 13, and 13 is not a square; but, if it were a

square, the equation could easily be solved 1
.

Thus \ve must find two numbers to replace 13 and 4 such

that their product is a square, while either + 12 is

also a square.

Now the product is a square if both are squares ;
hence we

must find two squares such that either + 12 = a square.
" This is easy

2
and, as we said, it makes the equation easy

to solve."

The squares 4, \ satisfy the condition.

1 The equation 52^+ n = 2 can in reality be solved as it stands, by virtue of the fact

that it has one obvious solution, namely x = i . Another solution is found by substituting

jr+i for jr, and so on. Cf. pp. 69, 70 above. The value JT= i itself gives (13, i, 4) as

a solution of the problem.
2 The method is indicated in II. 34. We have to find two pairs of squares differing

by 12. (a) If we put 12 = 6.1, we have

and 1 6, 4 are squares differing by n, or 4 is a square which when added to n gives a

square. () If we put 12 = 4.3, we fid '-(4-3); or - to be a square which when

added to 12 gives a square.
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Retracing our steps, we now put <\x, ijx and x\^ for the

numbers, and we have to solve the equation

x*+i2 = square = (x+ 3)", say.

Therefore x = %, and

(2, 2, 1 j
is a solution 1

.

ii. To find three numbers such that the product of any pair

minus a given number gives a square.

Given number 10.

Put product of first and second = a square + 10 =4 -H 10,

say, and let first = 14*, second = \\x.

Let product of second and third = a square + 10= 19, say ;

therefore third = 19*:.

By the third condition, 266x'2 10 must be a square ;
but

266 is not a square
2
.

Therefore, as in the preceding problem, we must find two

squares each of which exceeds a square by 10.

The squares 30^, 12\ satisfy these conditions 3
.

Putting now 30^^, \\x, \2-\x for the numbers, we have,

by the third condition, 37OT
9
5;r

2 10 = square [for

370^ Diophantus writes 370J^];
therefore 5929*2

- 160 = square = (77*
-

2)
2
, say.

Therefore x = }|, and

the numbers are ^, 22, .

1 Euler (Algebra, Part n. Art. 232) has an elegant solution of this problem in whole

numbers. Let it be required to find x, y, z such that xy + a, yz + a, zx + a are all squares.

Suppose xy + a=jP, and make z= x+j> + $;

therefore xz + a = x* + xy + qy. + a = xz + qx + {P,

and yz +a=xy+y*+ qy+ a=jP + qy+lP',

and the right hand expressions are both squares if ^ = 2/, so that z =x+yip.
We can therefore take any value for p such that /

2>, split p^-a into factors,

take those factors respectively for the values of x and y, and so find 2.

E.g. suppose a 11 and ^2= 25, so that xy=\$\ let x=i,y=i^ t
and we have

2=14=^10=24 or 4, and (i, 13, 4), (i, 13, 24) are solutions.
2 As a matter of fact, the equation 266^- io= 2 can be solved as it stands, since it

has one obvious solution, namely x=i. (Cf. pp. 69, 70 above and note on preceding

problem, p. 159.) The value x=i gives (14, i, 19) as a solution of the problem.
3
Tannery brackets the passage in the text in which these squares are found, on

the ground that, as the solution was not given in the corresponding place of in. 10, there

was no necessity to give it here. 10 and i being factors of 10,

thus 3<>i is a square which exceeds a square by 10. Similarly {-(5 + 2) I or 12^ is such

a square. The latter is found in the text by putting mz - 10 = square= (m --
2)

2
, whence

* = 34i and a
2=n|.
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12. To find three numbers such that the product of any two

added to the third gives a square.

Take a square and subtract part of it for the third number
;

let x- + 6x-\-g be one of the sums, and 9 the third

number.

Therefore product of first and second =x*+6x; let first

= x, so that second = x + 6.

By the two remaining conditions

IOF + 54]
~;r are both squares.
6J

Therefore we have to find two squares differing by 48 ;

"
this is easy and can be done in an infinite number

of ways."
The squares 16, 64 satisfy the condition. Equating these

squares to the respective expressions, we obtain

x= i, and

the numbers are i, 7, g.

1 3. To find three numbers such that the product of any two

minus the third gives a square.

First x, second x+ 4 ;
therefore product = x* + ^x, and we

assume third = 4^.

Therefore, by the other conditions,

AX* + 1 5.*- )

\ are both squares.
4*

2 -*- 4j

The difference = i6x + 4 = 4 (4^ + i), and we put

Therefore x = f, and

the numbers are
|, *,

14. To find three numbers such that the product of any two

added to the square of the third gives a square
1
.

1 Wertheim gives a more general solution, as follows. If we take as the required

numbers X- ax, V=ajc + 6-, Z=- 2
, two conditions are already satisfied, namely

A'K+Z2 = a square, and YZ+ X*= a. square.

It only remains to satisfy the condition ZX+ F2= a square, or

a2*2 +
^|

at?* +#= a square.

Put atx3 + ^a^?x+ l>*

10

16^(^and JT=
;

a (33
-

where k remains undetermined.

H. D.
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Firsts, second 4^+ 4, third I. Two conditions are thus

satisfied.

The third condition gives

x + (4* + 4)2
= a square = (4*

-
5)

2
>
say-

Therefore x= 7
9

,
and

the numbers (omitting the common denominator)

are 9, 328, 73.

15. To find three numbers such that the product of any two

added to the sum of those two gives a square
1
.

[Lemma.] The product of the squares of any two con-

secutive numbers added to the sum of the said

squares gives a square
2
.

Let 4, 9 be two of the required numbers, x the third.

Therefore
iatr +

'I are both squares.

The difference = $x + 5
=

5 (x + i
).

Equating the square of half the sum of the factors to

IOF+ 9, we have

(H* + 6
)}

2 = 10* + 9.

Therefore x= 28, and (4, 9, 28) is a solution.

1 The problem can of course be solved more elegantly, with our notation, thus. (The

same remark applies to the next problem, in. 16.)

If x, y, z are the required numbers, xy + x+y, etc. are to be squares. We may
therefore write the conditions in the form

(y+i) (z+ i)= a square + i,

(z+i)(x+i) = a square + i,

(jr+i)(^+i)=a square + 1.

Assuming a2,

2
, f2 for the respective squares, and putting

= x+i, i)=y+i, f=z+i,
we have to solve

[This is practically the same problem as that in the Lemma to Dioph. v. 8.]

Multiplying the second and third equations and dividing by the first, we have

with similar expressions for r), f.

x, y, z are these expressions minus i respectively, a2
,

2
,
c1 must of course be so

chosen that the resulting values of , i), f may be rational. Cf. Euler, Commentationes

arithmeticae, II. p. 577.
2 In fact, a2

(a+i)
2 + a2 + (a+i)

2
={a(o+i) + i}

2
.
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Otherwise thus 1
.

Assume first number to be x, second 3.

Therefore 4^ + 3 = square = 25 say, whence x = 5^, and 5^,

3 satisfy one condition.

1 This alternative solution would appear to be undoubtedly genuine.

Diophantus has solved the equations

Fermat shows how to solve the corresponding problem with four numbers instead of

three. He uses for this purpose Diophantus' solution of V. 5, namely the problem
of finding x2

, y2
, z2, such that

Diophantus finds I , ,

J
as a solution of the latter problem. Fermat takes

these as the first three of the four numbers which are to satisfy the condition that the

product of any two plus the sum of those two gives a square, and assumes x for the

fourth. Three relations out of six are already satisfied, and the other three require

+*+, or 34* + 25

9 9 99
64 64 ij.x 64x + x+ ,

or ta- +
9 9 99
'-a^+'-g, or

~5* + 12?

9 9 99
to be made squares : a "triple-equation" to be solved by Fermat's method. (See the

Supplement, section V.)

Fermat does not give the solution, but I had the curiosity to work it out in order to

verify to what enormous numbers the method of the triple-equation leads, even in such

comparatively simple cases.

We may of course neglect the denominator 9 and solve the equations

73* + 64= z/2,

205*+ 196= ^2.

The method gives

x_ _ 459818598496844787200

631629004828419699201
'

the denominator being equal to (25132230399)2.

Verifying the correctness of the solution, we find that, in fact,

25

73 x ,

l
_ / i

64
'

*S X / 12275841601X2

196 V25i3"3399/

Strictly speaking, as the value found for x is negative, we ought to substitute y - A
for it (where

- A is the value found) in the three equations and start afresh. The

portentous numbers which would thus arise must be left to the imagination.
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Let the third be x, while 5^, 3 are the first two.

Therefore
^

~
I must both be squares;

but, since the coefficients in one expression are respectively

greater than those in the other, but neither of the ratios

of corresponding coefficients is that of a square to a

square, our suppositions will not serve the purpose \
we

cannot solve by our method.

Hence (to replace 5$, 3) we must find two numbers such

that their product + their sum = a square, and the

ratio of the numbers increased by I respectively is

the ratio of a square to a square.

Let these be y and 47 + 3, which satisfy the latter con-

dition
; and, in order that the other may be satisfied,

we must have

4/
2 + 87 + 3 = square = (zy

-
3)

2
, say.

Therefore y = T
3
^.

Assume now ^, 4\, x for the three numbers.

Therefore Jf*
4" 4
/} are both squares,

or, if we multiply by 25 and 100 respectively,

130* + 105 )

,30*+ J0 }

are both squares.

The difference is 75 = 3.25, and the usual method of

solution gives x = ^.
The numbers are

, g, .

1 6. To find three numbers such that the product of any two

minus the sum of those two gives a square.

Put x for the first, and any number for the second; we
then fall into the same difficulty as in the last

problem.
We have to find two numbers such that

(a) their product minus their sum = a square, and

(b) when each is diminished by I, the remainders

have the ratio of squares.

Now 47+ i,/+ i satisfy the latter condition.

The former (a) requires that

47
s

I = square = (2y 2)
2
, say,

which gives y .

Assume then J, -,x for the numbers.
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Therefore , ft [
are both squares,

*x~ If J

or, if we multiply by 4, 16 respectively,

lox- 14)

I0jr _ 26 }

* both squares.

The difference is 12 = 2.6, and the usual method gives

*=3-
The numbers are ^, 3^

=
-g-, 3 = y-

17. To find two numbers such that their product added to

both or to either gives a square.

Assume x,^x\ for the numbers, since

x (^x i ) + x = 4x2
,
a square.

A*& _L 2 y _ T \

Therefore also
, , \ are both squares.

4*2 + 4*-
- i

j

The difference is x=/^x. \, and we find

*-4h-
The numbers are

,
--.

1 8. To find two numbers such that their product minus either,

or minus the sum of both, gives a square
1

.

1 With this problem should be compared that in paragraph 42 of Part I. of the

Invenlum Novum of Jacobus de Billy (Oeuvres de Fermat, in. pp. 351-2), where three

conditions correspond to those of the above problem, and there is a fourth in addition.

The problem is to find
, -q (!>;) such that

t

are all squares.

Suppose TJ
= X, =i-x; the first two conditions are thus satisfied. The other

two give

Separating the difference ix into the factors ix, t, we put, as usual,

(^y--~..
whence .*= | , and the numbers are | , | .

o so
To find another value of x by means of the value thus found, we put ^ + 5 *n place of

x in the double-equation, whence

Multiplying the lower expression by 49, we can solve in the usual way. Our expressions
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Assume x+ i, 4^ for the numbers, since

<\x(x + i) \x = a square.

Therefore also
4;r

2 _ _ [

are both squares.

The difference is A[x = tx . i, and we find

*-!*.
The numbers are 2^, 5.

19. To find four numbers such that the square of their sum

plus or minus any one singly gives a square.

Since, in any right-angled triangle,

(sq. on hypotenuse) + (twice product of perps.) = a square,

we must seek four right-angled triangles [in rational

numbers] having the same hypotenuse,
or we must find a square which is divisible into two

squares in four different ways ;
and "we saw how to

divide a square into two squares in an infinite

number of ways." [ll. 8.]

Take right-angled triangles in the smallest numbers,

(3, 4, 5) and (5, 12, 13); and multiply the sides of

are now^2 - -y +~ and 49^ - ^-y +^ , and the difference between them is ^8y
2 - noy.

The solution next mentioned by De Billy was clearly obtained by separating this

difference into factors such that, when the square of half their difference is equated to

jP-y+jr\ the absolute terms cancel out. The factors are ^y, Jf--, and we put
'

This givesy=
4

't
5 "

, whence x /

, and the numbers are
71362992 7'36299 2

48647065
^

22715927

71362992' 71362992'

A solution in smaller numbers is obtained by separating ^8y
2 - noy into factors such

that the terms in x2 in the resulting equation cancel out. The factors are 6y, 8y
--

, and

we put

whence y= 479 'S9 and x= 47959
I

3 = 5l865
.

10416' 10416 8 10416'

This would give a negative value for i x
; but, owing to the symmetry of the

original double-equation in x, since x=- 1 satisfies it, so does x= 10
*] ; hence the

10416 51865'

numbers are
|^-

and *y : a solution also mentioned by De Billy.

Cf. note on iv. 23.
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the first by the hypotenuse of the second and vice

versa.

This gives the triangles (39, 52, 65) and (25, 60, 65); thus

65
2 is split up into two squares in two ways.

Again, 65 is "naturally" divided into two squares in two

ways, namely into 7
2 + 4

2 and 82 + i
2

,
"which is due

to the fact that 65 is the product of 13 and 5, each of

which numbers is the sum of two squares."

Form now a right-angled triangle
1 from 7, 4. The sides

are (;
2 - 4

2
,
2 . 7 . 4, ;

2 + 4
2

) or (33, 56, 65).

Similarly, forming a right-angled triangle from 8, I, we
obtain (2 . 8 . i, 8 2 - i

2
,
8 2 + I

2
) or 16, 63, 65.

Thus 65
2
is split into two squares in four ways.

Assume now as the sum of the numbers 6$x and

as first number 2 . 39 . 52;tr
2 = 4056^,

second 2.25. 6ox2 = 3000^,

third 2.33. 56;tr
2 = 3696^,

fourth 2. i6.63x*=20i6x*,

the coefficients of x* being four times the areas of the

four right-angled triangles respectively.

The sum 12768^ = 65^, and x
The numbers are

12675000 15615600 J3 ^

163021824' 163021824' 163021824' 163021824*

20. To divide a given number into two parts and to find a

square which, when either of the parts is subtracted from it, gives

a square
2
.

Given number 10, required square xz + 2x + i.

Put for one of the parts 2x + i, and for the other ^x.

The conditions are therefore satisfied if

i = 10.

Therefore x=i
the parts are (4, 6) and the square 6.

1 If there are two numbers/, y, to "form a right-angled triangle" from them means

to take the numbers /2 + ^
2

, />
2 -

q
1

, ipq. These are the sides of a right-angled triangle,

2 This problem and the next are the same as II. 15, 14 respectively. It may therefore

be doubted whether the solutions here given are genuine, especially as interpolations

from ancient commentaries occur most at the beginning and end of Books,
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21. To divide a given number into two parts and to find a

square which, when added to either of the parts, gives a square.
Given number 20, required square x* + 2x + i.

If to the square there be added either 2^+3 or 4*+ 8,

the result is a square.

Take 2x + $, <\x + 8 as the parts of 20, and 6x+ 1 1 = 20,

whence x = \\.

Therefore the parts are (6, 14) and the square 6|.

BOOK IV

1. To divide a given number into two cubes such that the sum
of their sides is a given number 1

.

Given number 370, given sum of sides 10.

Sides of cubes 5 +x, 5 x, satisfying one condition.

Therefore 30^ + 2 50 = 370, x = 2,

and the cubes are 7
3
, 3

3
,
or 343, 27.

2. To find two numbers such that their difference is a given

number, and also the difference of their cubes is a given number.

Difference 6, difference of cubes 504.

Numbers X+^XT,.
Therefore i8;tr

2 + 54 = 504, x z =
25, and x=$.

The sides of the cubes are 8, 2 and the cubes 512, 8.

3. To multiply one and the same number into a square and

its side respectively so as to make the latter product a cube and

the former product the side of the cube.

Let the square be xz
. Its side being x, let the number

be 8/r.

Hence the products are 8x, 8, and

(8;tr)
3 = 8.

Therefore 2 = %x, x = \, and the number to be multiplied

is 32.

The square is ^ and its side -.

1 It will be observed that Diophantus chooses, as his given numbers, numbers such

as will make the resulting "pure" quadratic equation give a " rational
"
value for x. If

the given numbers are ia, ib, respectively, we assume b + x, b-x as the sides of the

cubes, and we have

so that x*= (a-lF)l$b; x is therefore "irrational" unless (a-b
3
)l$b is a square. In

Diophantus' hypothesis a is taken as 185, and b as 5, and the condition is satisfied. He
shows therefore incidentally that he knew how to find two numbers a, b such that

(a-lP)l?,b is a square (Loria, Le scienze esatte nelV antica Grecia, Libro v. pp. 129-30).

A similar remark applies to the next problem, iv. i.
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4. To add the same number to a square and its side re-

spectively and make them the same 1

\i.e. make the first product a

square of which the second product is the side].

Square x*, with side x.

Let the number added to x* be such as to make a square

say 3X*.

Therefore yc* + x = side of $x
2

2x, and x \.

The square is -, its side -, and the number -.

5. To add the same number to a square and its side and make
them the opposite

2
.

Square x*, the number a square number of times x*

minus x> say 4^r
2 x.

Hence $x
2 x= side of 4^r

2 = 2x, and x = f .

The square is its side f ,
and the number ^.25 5 Z5

6. To add the same square number to a cube and a square
and make them the same.

Let the cube be x3 and the square any square number of

times x*, say gx
z

.

We want now a square which when added to gx* makes
a square. Take two factors of 9, say 9 and i, sub-

tract i from 9, take half the difference and square.

This gives 16.

Therefore i6x* is the square to be added.

Next, x* + i6x*= a cube = Sx3
, say; and x ^-.

The cube is therefore ^-, the square ^?4, and
343 49

the added square number ^5-.
49

1 In this and the following enunciations I have kept closely to the Greek partly
for the purpose of showing Diophantus' mode of expression and partly for the brevity

gained thereby.

In Prop. 4 to "make them the same" means what I have put in brackets ; to "make
them the opposite" in Prop. 5 means to make the first product a side of which the second

product is the square.
2 Nesselmann solves the problem generally, thus (Notes in Zeitschriftfur Math. u.

Physik, xxxvii. (1892), Hist. lilt. Abt. p. 162).

x2 +y= J(x +>>) ; therefore x* + ix^y +_y
2=x +y, oiy2 -(i- ix2

)y=x-x*.
Solving for y, we obtain, as one of the solutions,

To make the expression under the radical a square we put -+x x^=(mx I
,

m + i m* + m3 m i
whence x=

^
-

, _j/=
-

^
-

TO
-

Diophantus solution corresponds to m i.
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7. To add the same square number to a cube and a square

respectively and make them the opposite.

For brevity call the cube (i), the second square (2) and

the added square (3).

Now, since (2) + (3) = a cube, suppose (2) + (3) = (i).

Since a^ + bz 2ab is a square, suppose (i)
= (a*+&

i

),

(3)
= 2ab, so that the condition that (i) + (3)

= square

is satisfied.

But (3) is a square, and, in order that 2ab may be a square,

we put a = x, b = 2x.

Suppose then ( i )
= x* + (zxf = $x

z
, (3)

= 2 . x . 2x =^ ;

therefore (2) = ^, by subtraction.

But $x
2

is a cube; therefore x = 5,

and the cube (i)=i25, the square (2)
=

25, the

square (3) = 100.

Otherwise thus.

Let .(2)+ (3)= (i).

Then, since (i ) + (3)
= a square, we have to find two squares

such that their sum + one of them = a square.

Let the first of these squares be x*, the second 4.

Therefore 2** + 4 = square = (2x 2)
2

, say ;
thus x = 4,

and the squares are 16, 4.

Assume now (2)
= 4**, (3)= \6xz

.

Therefore 2ox z
is a cube, so that x= 20;

the cube (i) is 8000, the square (2) is 1600, and the

added square (3) is 6400.

8. To add the same number to a cube and its side and make
them the same 1

.

Added number x, cube Sx5
, say. Therefore second sum

= $x, and this must be the side of Sx3 + x.

That is, 8x3 + x= 27x*, and igx
s = x, or igx

2 = i.

1 Nesselmann (pp. fit. p. 163) gives a more general solution.

We have x3+y= (x +y)
3

, whence i =

Solving for y, we find

xndy= na +m2
' If the Positive sign be taken, then, in order that y may

always be positive, m\n must be >3 + >/i2; Diophantus' solution corresponds to / =
;,
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But 19 is not a square. Hence we must find, to replace

it, some square number. Now igx
3 arises from

2JX3
8x*, where 27 is the cube of 3, and 8 the cube

of 2. And the 3* comes from the assumed side 2x,

by increasing the coefficient by unity.

Thus we must find two consecutive numbers such that their

cubes differ by a square.

Let them be 7,7+ I.

Therefore y* + -$y + i = square = ( I
-

2yf, say, and y = 7.

Going back to the beginning, we assume added number
= *, side of cube = "jx.

The side of the new cube is then 8*, and

343** +*= 512^.
Therefore *2 = y^, and x = -^.

The cube is
J^L

its side
J ,

and the added

number
^-.

9. To add the same number to a cube and its side and make
them the opposite

1
.

Suppose the cube is S*3
,
its side being 2*, and the added

number is 27x3
2.x. (The coefficients 8, 27 are

chosen as cube numbers.)
Therefore 3S*

3 2* = side of cube 27** = 3*, or 35** = 5.

This gives no rational value.

But 35 = 27 + 8, and 5
= 3+2.

Therefore we have to find two cubes such that their sum

has to the sum of their sides the ratio of a square

to a square*.

Let sum of sides = any number, 2 say, and side of first

cube = z, so that the side of the other cube is 2 - z.

1 Nesselmann (op. cit. p. 163) solves as follows. The equation being x+y=(x3 +y)3,

putjy^z-j;3, and the equation becomes x + z-x3 =

Dividing by x+ z, we have -r2 - xz+ z2= i .

Solving for x, we obtain x= -
{z >/(4

~
S02)}-

To make 4-322 a square, equate it to f-z-2 } ; +

x=
2 ^

n
, and y -z - x3. If the positive sign be taken, Diophantus' solution

corresponds to m t, = i.

2 It will be observed that here and in the next problem Diophantus makes no use of

the fact that

Cf. note on iv. 1 1 below.
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Therefore 8 1 2z -f 6z must be twice a square.

That is, 4 6z + 32* = square = (2
-

4,3-)
2
, say ;

s = i, and

the sides are
|j|, |f .

Neglecting the denominator and the factor 2 in the

numerators, we take 5, 8 for the sides.

Starting afresh, we put for the cube 125^ and for the

number to be added 512^-5^-; we thus get

637^ $x= %x, and x = | .

The cube is ^5, its side 5, and the added number?^.
343 7 OTO

10. To find two cubes the sum of which is equal to the sum
of their sides.

Let the sides be 2x, ^x.

This gives 35^= $x\ but this equation gives an irrational

result.

We have therefore, as in the last problem, to find two

cubes the sum of which has to the sum of their sides

the ratio of a square to a square
1

.

These are found, as before, to be 5
3
,
83

.

Assuming then $x, 8x as the sides of the required cubes,

we obtain the equation 637^= i^x, and x=\.

The cubes are
g.

1
Here, as in the last problem, Diophantus could have solved his auxiliary problem

of making (xr
i +ys

)l(x+y) a square by making x^-xy+y2 a square in the same way as in

Lemma I. to V. 7 he makes x^ + xy+y* a square.
The original problem, however, of solving

can be more directly and generally solved thus. Dividing out by (x+y), we must have

This can be solved by the method shown in the note to the preceding problem.

Alternatively, we may (with Wertheim) put x2 - xy+y2= (x + ^y)'
2
, and at the same

time \ = (x + ky).

Thus we have to solve the equations

which give x= I ~ J&2
-

2> J=i+k + &' *

where k remains undetermined.

Diophantus' solution is obtained by taking the positive sign and putting k= - or by

taking the negative sign and putting k= - -
.
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II. To find two cubes such that their difference is equal to

the difference of their sides.

Assume 2x, ^x as the sides.

This gives 193? = x, and x is irrational.

We have therefore to find two cubes such that their

difference has to the difference of their sides the

ratio of a square to a square
1

. Let them be (z+ i)
8
,

z3
,
so that the difference of the sides may be a square,

namely I.

Therefore $z* + 3#+ i = square = (i 2#)
2
, say, and z'j.

Starting afresh, assume 'jx, %x as the sides; therefore

i6$x*=x, and x -^.

The sides of the two cubes are therefore ^-, .

1 Nesselmann (Die Algebra der Griechen> pp. 447-8) comments on the fact that

Diophantus makes no use here of the formula (x
3 -y3

)l(x-y)=x
a + x}'+y2 , although he

must of course have known it (it is indeed included in Euclid's much more general
summation of a geometrical progression, IX. 35). To solve the auxiliary problem in

IV. 1 1 he had only to solve the equation

x? + xy+y2
a. square,

which equation he does actually solve in his Lemma I. to v. 7.

The whole problem can be more simply and generally solved thus. We are to have

Nesselmann's method of solution (cf. note on iv. 9) gives x=- {
-

mn 2/ (w2
3

2
) .

,
.

and hence y= -?-?, x=--^ ^-
- -. Diophantus solution is obtained by2 2 2 2

putting m= i, n = 2 and taking the lower sign.

Wertheim's method (see note on preceding problem) gives in this case

i-^ ik-i

where k is undetermined.

If we take the negative sign and put k= -
3, we obtain Diophantus' solution.

Bachet in his notes to IV. 10, n solves the problems represented by

subject to the condition that m is either a square or the third part of a square. His method

corresponds to that of Diophantus. He does not divide out by xy, and he reduces the

problem to the subsidiary one of finding , 17 such that the ratio of {
3
=fci^ to 17 is the

ratio of a square to a square. His assumptions for the "
sides," , 17, are of the same kind

as those made by Diophantus; in the first problem he assumes x, 6 x and in the second

x, x+2. In fact, it being given that (y?y3)l(xy)=a, Bachet assumes xj>=z and

thus obtains

33? $xz+ z*= a,

which equation can easily be solved by Diophantus' method if a is a square or triple of a

square.

Fermat observes that the Siopt<j>i6j of Bachet is incorrect because not general. It

should be added that the number (m) may also be the product of a square number into a

prime number of the form 3+ i, as 7, 13, 19, 37 etc. or into any number which has no

factors except 3 and prime numbers of the form 3+ i, as 11, 91 etc. "The proof and

the solution are to be obtained by my method. "
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12. To find two numbers such that the cube of the greater

+ the less = the cube of the less + the greater
1
.

Assume 2x, ^x for the numbers.

Therefore 27x* + 2x = %x 3 + $x, or igx
a = x, and x is

irrational.

But 19 is the difference of two cubes, and I the difference

of their sides. Therefore, as in the last problem,
we have to find two cubes such that their difference

has to the difference of their sides the ratio of a

square to a square
2

.

The sides of these cubes are found, as before, to be 7, 8.

Starting afresh, we assume jx, $x for the numbers; then

343-r* + 8^- = 5 1 2x* + jx, and x -
-fa.

The numbers are
, .

13. To find two numbers such that either, or their sum, or

their difference added to unity gives a square.

Take for the first number any square less I
;

let it be,

say, o-r 2 + 6^. But the second + I =a square; and

first + second + i also = a square. Therefore we must

find a square such that the sum of that square and

ojr
2 + 6x = a square.

Take factors of the difference gx* + 6x, say gx + 6, x\

the square of half the difference between these factors

Therefore, if we put for the second number this expres-
sion minus i, or \6x* + 2^x + 8, three conditions are

satisfied.

The remaining condition gives difference + i = square,

or 7^
2 + i8x -f 9 = square = (3 3^r)

2
, say.

Therefore x= 18, and (3024, 5624) is a solution.

14. To find three square numbers such that their sum is equal

to the sum of their differences.

Sum of differences = (greatest) (middle) + (middle)

(least) +(greatest)least= twice difference of greatest

and least.

This is equal to the sum of all three, by hypothesis.

Let the least square be i, the greatest x* + 2x+ i
;

1 This problem will be seen to be identical with the preceding problem.
2 See note, p. 173.
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therefore twice difference of greatest and least = sum of

the three = 2x* + 44:.

But least + greatest =x- + 2X+2, so that

middle = x2 + 2x 2.

Hence Xs + 2x - 2 = square = (x
-

4)*, say, and x= f .

The squares are (&, ^, i"\ or (196, 121, 25).\ 25 25 /

15. To find three numbers such that the sum of any two

multiplied into the third is a given number.

Let (first + second) x third = 35, (second + third) x first

= 27 and (third + first) x second = 32.

Let the third be x.

Therefore (first + second) = 3 $/x.

Assume first = lo/x, second = 25/4:; then

250 ,

These equations are inconsistent ; but they would not be if

25 10 were equal to 32 27 or 5.

Therefore we have to divide 35 into two parts (to replace

25 and 10) such that their difference is 5. The parts
are 15, 20. [Cf. I. i.]

We take therefore 1 5/ar for the first number, 2ofx for the

second, and we have

Therefore x= 5, and (3, 4, 5) is a solution 1
.

1 As Loria says (Le scienze esatte nelT antica Grecia, Libro V. p. 131), this method of

the "false hypothesis," though somewhat indirect, would not be undeserving of a place
in a modem textbook.

Here again, as in IV. r, 2, Diophantus tacitly chooses, for his given numbers, numbers

which will make the resulting
' '

pure
"
quadratic equation give a rational value for jr.

We may put the solution more generally thus. We have to solve the equations

(y+z)x=a, (z+ x)y=&, (x+y)i=c.

Diophantus takes z for his principal unknown and, writing the third equation in the

form x+y=e/z, he assumes jr = o/2, y=$\z, where a, /3 have to be determined. One

equation connecting a, /3 is a + /3
= <-. Next, substituting the values of JT, y in the first two

equations, we have
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1 6. To find three numbers such that their sum is a square,

while the sum of the square of each added to the next following

number gives a square.

Let the middle number be any number of x's, say 4^;
we have therefore to find what square + ^x gives

a square. Split ^x into two factors, say 2x, 2, and

take the square of half their difference, (x
- I )

2
. This

is the square required.

Thus the first number is x I.

Again, i6x* + third number = a square. Therefore, if we

subtract \6x* from a square, we shall have the third

number. Take as the side of this square the side of

\6x*, or ^x, plus i.

Therefore third number = (^x + i)
2 \6x* = &x + I.

Now the sum of the three numbers = a square; therefore

\$x= a square = i6o,y
2
, say

1
.

The numbers are then 13^* i, 52jp
2
, 104^+ i.

Lastly, (third)
2 + first = a square.

Therefore io8i6y* + 22iy
2 = a. square,

or io8i6^
2 + 221 = a square = (1047 + i)

2
, say.

Therefore j = fg = .|f, '

17. To find three numbers such that their sum is a square, while

the square on any one minus the next following also gives a square.

The solution is precisely similar to the last.

whence it follows that a-
fi
= a-b. From this condition and a + /3

=
c, we obtain

a= -(a -6 + c), p = -(-a + i> + c).

o_ / i(a -6 + c)(a + 6- f
)) 8_ /{(

z V ( i(-a + b + c) /'
y~'

z~ V *

Now x, y, z must all be rational, and this is the case if

where /, q, r are any integers.

This gives a=p(tj + r), b= q(r+p), c=r(p + q);

a fact which can hardly have been unknown to Diophantus, since his values a = ij, b= $i,

^=35 correspond to the values/ = 3, ^= 4, r=$ (Loria, loc. cit.).

1

Diophantus uses the same unknown s for y as for x, writing actually Kal ylverai 6

s A
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The middle number is assumed to be 4^. The square
which exceeds this by a square is (ar+i)

2
,
and we

therefore take x+ i for the first number.
For the third number we take i6x* ($x - i)

s or %x i.

The sum of the numbers being a square,
1 3^-

= a square = i6o.j>>
2
, say.

The numbers are then i$y
z + i, S2^

2
, lo^/p

2
i.

Lastly, since (third)
2

first = a square,
108 i6y 22 iy

z = a square,

or io8i6j
2 221 = a square = (104^ i)

2
, say.

1 8. To find two numbers such that the cube of the first added

to the second gives a cube, and the square of the second added to

the first gives a square.

First number x. Therefore second is a cube number

minus Xs
, say 8 x3

.

Therefore x6 \6x* + 64 + ;r = a square = (x
3 + 8)

2
, say,

whence
>̂
2x3 = x, or 32^=1.

This gives an irrational result; x would however be

rational if 32 were a square.

But 32 comes from 4 times 8. We must therefore sub-

stitute for 8 in our assumptions a cube which when

multiplied by 4 gives a square. If y* is the cube,

4y = a square = \6y
z

say; whence y = 4.

Thus we must assume x, 64 x3 for the numbers.

Therefore x6- 1 2&X3 + 4096+x = a square = (x
3 + 64)", say ;

whence 2^6x
3 = x, and x = -fa.

The numbers are 4, ~-16' 4090

19. To find three numbers indeterminately
1 such that the

product of any two increased by i is a square.

Take for the product of first and second some square

minus i, say x
z + 2x\ this satisfies one condition.

Let second = x, so that first = x+ 2.

Now product of second and third + i =a square; let the

1 The expression is fr T$ dop/ffry, which is defined at the end of the problem to mean

in terms of one unknown (and units), so that the conditions of the problem are satisfied

whatever value is given to the unknown.

H. D. I2
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square be ($x + i)*, so that product of second and

third = 9^ + 6x
;

therefore third = 9^+6.
Also product of third and first + I = a square; therefore

gx
z + 2\x + 1 3

= a square.

Now, if 13 were a square, and the coefficient of x were

twice the product of the side of this square and the

side of the coefficient of x2
,

the problem would be

solved indeterminately.

But 13 comes from 2.6+ I, the 2 in this from twice I,

and the 6 from twice 3. Therefore we want two

coefficients (to replace I, 3) such that the product
of their doubles + i = a square, or four times their

product + i = a square.

Now four times the product of any two numbers plus the

square of their difference gives a square. Thus the

requirement is satisfied by taking as coefficients any
two consecutive numbers, since the square of their

difference is i. [The assumption of two consecutive

numbers for the coefficients simultaneously satisfies

the second of the two requirements indicated in the

italicised sentence above.]

Beginning again, we take (x + i)
2

i for the product of

first and second and (2x + i)
2

i for the product of

second and third.

Let the second be x, so that first = x+ 2, third = 4^+4.
[Then product of first and third + i = 4^ + 12^ + 9, and

the third condition is satisfied.]

Thus the required indeterminate solution 1
is

(x + 2, x, 4X + 4)-

1 The result obtained by Diophantus really amounts to the more general solution

a?x+ia, x, (a+ i)
2jr+2 (a+i).

With this solution should be compared that of Euler (Algebra, Part II. Art. 231).

I. To determine x, y, z so that

xy+i, yz+i, zx+i are all squares.

Suppose zx+ i - /*, yz+i = <j*,

so that *=.(/*- i)/, y= (q*-i)lz.

Therefore xy + 1 = (^Zjl^JLl) + , =a square ,

or (?-i)(f-i)+z*= z square
=

(2
-
ry, say ; [Euler has (z + r)

2
]

_
whence z=-St.-UJC

2/-

where any numbers may be substituted for^, q, r.
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20. To find four numbers such that the product of any two
increased by unity is a square.

For the product of first and second take a square minus I,

say (x+ iy*- i =x* + 2x.

Let first = x, so that second =x+2.

For example, if r=pq+ i, we shall have

=J/+)L , 2

II. But, ifwhole numbers are required, we put ;ry+ 1 =/*, and assume z=x+y+f.
We then have xz+ i =*3+ .ry+^jr+ i =

and ?z+i=xy+yi+2y+i=
These expressions are both squares if q= ip.

Thus a solution is obtained from xy=p*- i combined with either

z=x+y+ip, or z=x+y-ip.
We take a certain value for /*, split /*

-
i into two factors, take these factors for the

values of x, y respectively, and so find z.

For example, let/=3, so that/
2 - 1 = 8; ifwe make x=t, .7=4, we find z=either 11

or o ; and in this case x=i, y=\t z= it is the solution.

If we put /*=(+ 1)
2

, we have xy=?+ if ; and if we put x=t+y,jf={, we have

or o.

The solution is then (+ 2, , 4^+ 4), as in Diophantus.
Fermat in his note on this problem shows how to find three numbers satisfying not

only the conditions of the problem but three more also, namely that each of the numbers

shall itself when increased by i give a square, i.e. to solve the equations

Solve, he says, the present problem of Diophantus in such a way that the terms

independent of x in the first and third of the numbers obtained by his method shall be

such as when increased by i give a square. It is easy to find a value for a such that

IM+ 1 and i (a+ 1) + 1 are both squares. Fermat takes the value ia=
-j?

, which satisfies

the conditions, and the general expressions for the three numbers sought are therefore

160 13 7225 85

5-7r4
*+

3-6>
- 3-*3-

Each of these has, when increased by i, to become a square, that is, we have to solve the

triple-equation

rfjL^if
5184 36

Fermat does not give the solution ; but it is effected as follows.

Multiplying the third expression by 36 and the first by ^ . 36 (in order that the

absolute terms in the two may be equal), we have to solve

12 2
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For the product of first and third take (2x+ i)
2 -

i, or

4^r
2 + 4, the coefficient of x being the number next

following the coefficient (i) taken in the first case,

for the reason shown in the last problem ;

thus third number = 4^ + 4.

Similarly take (3* + i)
2 -

i, or 9x* + 6x, for the product of

first and fourth; therefore fourth = 9* +6.
And product of third and fourth + i

= (4;r+4)(9;r + 6) + i =36^ + 60^+25,
which is a square

1
.

X+I=V2

*+I2I='2

(S)

1

-

In order to solve by the method of the triple-equation, we make x+ i a square by
putting x=y* + iy.

Substitute this value in the other two expressions, and for convenience multiply each

by 144; this gives

(y)V + V) + ('3*)
8= a square!

(8s)
2 0* + y)+( I3*)

2= a squareJ

The difference= (y*+ iy) (s$ +
l-^\ (s5

- *-^\
'

The square of half the difference of the factors equated to the smaller expression gives

whencey=~; and we find that

7239457225
It is easily verified that

so that the value of x satisfies the three equations.
The numbers satisfying Fermat's six conditions are then

1&Lx + 13 _i 0060498 1 50193144576 7225 85 _ 48191691
5184 36 171348100' 7239457225' 5 *84

J

36~ 4008004
1 This results from the fact that, if we have three numbers x, y, z such that

xy+i=(mx+i)z and xz+ i = {(m + i)x+ i}
2

,

then yz+i = \i(m+i)x+('2m+i)}^
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Lastly, product of second and fourth + i = gx2 + 24*+ 13 ;

therefore gx* + 24* + 13 = square = (3* - 4)', say ;

which gives x =
-J%.

All the conditions are now satisfied 1

,

and
TV TV

" *
is the solution2'

1 The remaining condition was: product of second and third + i=a square. That this

is satisfied also follows from the general property stated in the last note. In fact

(x+ v) (4^ + 4) + i = 4*2+ iix + g,
which is a sqnare.

2 With this solution should be compared Euler's solution (Algebra, Part n. Art. 233)
of the problem of finding x, y, z, v such that the six expressions

xy + a, yz + a, zx+ a, xv + a, yv+ a, zv+ a

are all squares. The solution follows the method adopted to solve the corresponding

problem with three unknowns x, y, z only. See note on III. 10 above.

If we begin by supposing xy+ a=^P, and take z=x+y+ip, the second and third

expressions become squares (vide note on III. 10, p. 160).

If we further suppose v=x+y-ip, the fourth and fifth expressions also become

squares (vide the same note).

Consequently we have only to secure that the sixth expression zv + a shall be a square ;

that is,

x2 + 2xy+yz -
4/

2 + a= a square,

or (since xy + a =/2) xz - ixy +y* -
30= a square.

Suppose that . (x -y)
2 -^a=(x-y- q)* ;

therefore x-

Consequently /2=xy + a =y* +^-^ y+ a.

If we put p=y + r, we have

and y= -

from which /, x, and therefore z, v also, are found in terms of q, r, where y, r may have

any values provided that x, y, z, v are all positive.

Euler observed that this method is not suited for finding integral solutions, and,

pursuing the matter further, he gave the following very elegant solution of Diophantus'

actual problem (the case where a=i) in integers ("Miscellanea analytica" in Com-

mentationes arithmeticae, n. pp. 45-6)-

Six conditions have to be satisfied. If x, y, z, v are the required numbers, let x= i,

y= n, where m, n are any integers such that mn + i = P.

Then put z=m + n + il, and three conditions are already satisfied, for

xy+i=mn+i= I2, by hypothesis,

xz + i = in (m + n + il) + i = (/+ /w)
2

,

The three conditions remaining to be satisfied are

xv + i mv + i = a square,

yv + i = nv + i = a square,

zv + i = (m + n + 2/) v + i = a square.

Let us make the continued product of these expressions a square.



182 THE ARITHMETICA

21. To find three numbers in proportion and such that the

difference of any two is a square.

Assume x for the least, x + 4 for the middle (in order

that the difference of middle and least may be a

square), x+ 13 for the greatest (in order that differ-

ence of greatest and middle may be a square).

This product will be found to be

i + v (tK + n+ l)v+{(m + n + /)
2 -

1}
2+#/(w + + 2/)zr

3
.

Let us equate this to \i+(m + n+ l)v--vi
i ,in order that the terms in v, z>

2 as well

as the absolute term may vanish ; therefore

whence

=/(/+)(/+),
and therefore v= \l (/+ m) (/+).

It is true that we have only made the product of the three expressions mv+i, nv+i,
(m + n + il)v+ i a square ; but, as the value of v has turned out to be an integral number,
so that all three formulae are prime to one another, we may conclude that each of the

expressions is a square.

The solution is therefore

x=m, y=n, z =m + n + i/, z>= 4/ (/+*)(/+),
where mn + i = I3.

In fact, while three of the conditions have been above shown to be satisfied, we find,

as regards the other three, that

xv + i = 4/w (l+m) (l+n)+i = (*P+'ilm -
i)

2
,

yv+ i = 4/ (l+m) (/+) + i =(2/
2+ 2/ -

i)
2

,

2Z>+ I =4/(#Z + + 2/) (/+#*)(/+)+ I = (4/
l +2//W + 2/- i)

2
.

It is to be observed that / may be either positive or negative.
Ex. Let * =

3, = 8, so that /= 5.

If /= + 5, the solution is 3, 8, 21, 2080 ; if /= -
5, the solution is 3, 8, i, 120.

Fermat shows how to solve this problem, alternatively, by means ofthe "triple-equation.
"

Take three numbers with the required property, e.g. 3, r, 8. Let x be the fourth, and
we have then to satisfy the conditions

Put x=jfl+ty, so as to make the second expression a square, and then substitute the

value of x in the other two. We have then the double-equation

The difference= 5 (y* + iy) = $y (y + 1 ) .

We put then (3^+ i)
2=

whencey= 10, and xyz + iy= 120, which value satisfies the triple-equation.
The four numbers are then 3, i, 8, 120, which solution is identical with one of those

obtained by Euler as above.
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If now 13 were a square, we should have an indeterminate

solution satisfying three of the conditions.

We must therefore replace 13 by a square which is the

sum of two squares. Any rational right-angled

triangle will furnish what is wanted, say 3, 4, 5 ;

we therefore put for the numbers x, x + 9, ;r+ 25.

The fourth condition gives

4r + f
and x = .

Thus
, ^, -^- is a solution.

22. To find three numbers such that their solid content 1 added

to any one of them gives a square.

Assume continued product x*+ 2x, first number I, second

number ^x + 9, so that two conditions are satisfied.

The third number is then (x* + 2x)\(&x + 9).

This cannot be divided out unless x*\^x=2x\<) or,

alternately, x* : 2x = ^x : g ;
but it could be done if 4

were half of 9.

Now ^x comes from 6x 2x, and the 6x in this from

twice T)X\ the 9 comes from 3
2
.

Therefore we have to find a number m to replace 3 such

that 2m 2 = \nf\ thus m* = tyn
-

4, whence
2 m 2.

We put therefore for the second number (x+ 2? (x* + 2x\

or 2x + 4 ;
the third number is then

(x* + 2x)l(2x+ 4) or \x.

Lastly, the third condition requires

x* + 2x + \x= a square = 4^, say.

Therefore * = f,

and i, is a solution*.

1 6 e| at/run- ffre/>e6i,
" the solid (number formed) from them

" = the continued product

of the three numbers.
8 Observe the solution of a mixed quadratic.
3 Fermat gives a solution which avoids the necessity for the auxiliary problem.

Let the solid content bejc3 -**, the first number i, and ihe second number tx\ two

conditions are thus satisfied.

The third number is now A3 - xr divided by rr . i, or x - i ;
and the third condition

gives

x3 -^x-i=a. square.

Now x must be greater than i ; we therefore put

x*-^x-i=(x-m)*,
where m is greater than 2.



i84 THE ARITHMETICA

23. To find three numbers such that their solid content minus

any one gives a square
1
.

First numbers, solid content x* + x; therefore product of

second and third x-\- 1.

Let the second be i, so that the third is x + i.

The two remaining conditions require that

2
I shall both be squares. [Double-equation.]

The difference = x = J . 2x, say ;

thus (x + 1)
2 = x2 + x - i

,
and x = ty.

The numbers are (~, i, ^M.
\ o o /

24. To divide a given number into two parts such that their

product is a cube minus its side.

Given number 6. First part^r; therefore second = 6 x,

and 6x x2 = a cube minus its side.

Form a cube from a side of the form mx i, say 2^1,
and equate 6x x* to this cube minus its side.

Therefore Sx3
1 2xz

-f ^x= 6x x z
.

1 A remarkable problem of this kind (in respect of the apparent number of conditions

satisfied) is given by De Billy in the Inventum Novum, Part I. paragraph 43 (Oeuvres

de Fermat, III. p. 352) : To find three numbers
, 77, f (, f, 77 being in ascending order

of magnitude) such that the following nine expressions may become squares :

(0 f-fctf (4) i --!? (7) fr-fcjf,

(2) 77-f7?f, (5) f-f-fijf, (8) ijf-fijf,

(3) f-frf, (6) ij-f-frfc (9) V'-M.

Take x, i, i JT as the values of , 77, f respectively. Then six conditions, namely,

(0. (3) (4). (6). (?), (8), are all automatically satisfied.

By conditions (2) and (9) alike,

i -x+ x2= a. square.

And, by (5), i $x+ j?= a. square.

Solving this double-equation in the usual way, we get *=f ,and the numbers are
o

*
! I

8'
'

8

Another solution can be obtained by puttingy + ^ in place of x in the two expressions,8

and so on. Cf. note on III. 18 above.

It would appear from a letter from Fermat to De Billy of 26 Aug. 1659 (Oeuvres, n.

pp. 436-8) that this problem and the above single solution were De Billy's own. De Billy

had supposed that this was the only solution, but Fermat observed that there were any
number, as the above double-equation has any number of solutions. Fermat gave

(!O4l6

4l440\^ , i, H ) as another solution.
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Now, if the coefficient of x were the same on both sides,

this would reduce to a simple equation, and x would
be rational.

In order that this may be the case, we must put m for 2

in our assumption, where ^m m=6 (the 6 being
the given number in the original hypothesis). Thus
m =

3.

We therefore assume

or

and

The parts are *, ^.

25. To divide a given number into three parts such that their

continued product gives a cube the side of which is equal to the

sum of the differences of the parts.

Given number 4.

Since the product is a cube, let it be Sx3
,
the side of

which is 2x.

Now (second part)
-

(first) + (third)
-

(second) + (third)

(first)
= twice difference between third and first.

Therefore difference between third and first = half sum of

differences=;tr.

Let the first be any multiple of x, say 2.x; therefore the

third = $x.

Hence second = S-^/dt? = %x\ and, if tJie second had lain

between thefirst and third, the problem would have been

solved.

Now the second came from dividing 8 by 2 . 3, and the

2 and 3 are not two numbers at random but con-

secutive numbers.

Therefore we have to find two consecutive numbers such

that, when 8 is divided by their product, the quotient

lies between the numbers.

Assume m, m+i; therefore 8/(m* + m) lies between

m and m + I.

o

Therefore --
1- i > m + I,

m* + m
so that m* + m + 8 > m3 + 2m3 + m,

or 8 > m3 + m*.
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I form a cube such that it has m3
,
m* as terms, that is, the

cube (m -f ^)
3
,
which is greater than m3 + m 2

, and I put

therefore m + ^
= 2, and m =

.

Assume now for first number %x\ the third is x, and

the second is \x.

Multiplying throughout by 15, we take 2$x, 27^-, 4Ox,
and the product of these numbers is a cube the

side of which is the sum of their differences.

The sum = g2x = 4, by hypothesis.

Therefore x = -^,

and
(g, g, g)

are the parts required.

[N.B. The condition 8/(m* + m) < m + i is ignored in

the work, and is incidentally satisfied.]

26. To find two numbers such that their product added to

either gives a cube.

Let the first number be of the form m*x, say 8x
Second x* i. Therefore one condition is satisfied, since

Sx3 Sx + 8x = a cube.

Also Sx' Sx+ x2 - i =a cube = (2* i)
3
, say.

Therefore 13^ = 14^, and x = \&.

The numbers are ^, ^.

27. a
To find two numbers such that their product mimes either

gives a cube.

Let the first be of the form m*x, say 8x, and the second

x2 + i (since S^3 + 8x - Sx= a cube).

Also S^+Sxx2
i must be a cube,

" which is impossible
1
."

1

Diophantus means that, if we are to get rid of the third power and the absolute

term, we can only put the expression equal to (i^r-i)
3

, which gives a negative and

therefore "impossible" value for x. But the equation is not really impossible, for we can

get rid of the terms in x3 and -c
2
by putting

^-i='2x-, whence x=-,
\ I2/ ! 3/5 2

or we can make the term in x and the absolute term disappear by putting

Sjf + Sx-x*- ! = (***- iV, whence *= ^>-
\3 / '96

Diophantus has actually shown us how to do the former in iv. 25 just preceding.
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Accordingly we assume for the first number an expression
of the form m*x+ i, say Sx+ i, and for the second

number x* (since 8*8 + x* x* = a 'cube).

Also S.*8 +x2 - 8* - i = a cube = (2x- i)
3
, say.

Therefore x =
-J^,

arid the numbers are ^, ^.
28. To find two numbers such that their product their

sum gives a cube.

Assume the first cube (product + sum) to be 64, and the

second (product sum) to be 8.

Therefore twice sum of numbers = 64 - 8 = 56, and the

sum = 28, while the product + the sum = 64; therefore

the product = 36.

Therefore we have to find two numbers such that their

sum is 28 and their product 36. If 14 + *, 14 -x are

the numbers 1
, we have 196 ^ = 36, or x2 = 160; and,

if 160 were a square, we should have a rational

solution.

Now 160 arises from 142-36, and 14 = ^.28 = ^.56
= i (difference of two cubes); also 36 = (sum of

the cubes).

Therefore we have to find two cubes such that

(\ of their difference)
2 -

^ their sum = a square.

Let the sides of the cubes be (z + i), (z i);

therefore of difference = i^3 + ,
and the square of this

is 2j^+ 1^2 + ;

the sum of the cubes is ^ + 32-;

therefore 2^2* + \\z
z + z* 32 = a square,

or 9-s
4 + 6z* + i 40

s 122 = a square =(52* + i 62)*, say;

whence 32^ = 36^, and z = |.

The sides of the cubes are therefore ^-, |, and the cubes

Put now product of numbers + their sum = ^^, and pro-

duct sum =
g-J-j-

Therefore their sum = %$$, and their product
Now let the first number = x + half sum =x +

and the second = half sum - x= $&-
- x;

t'hprpfoj'p j 50 7 98^4 j*2 =^ JL4J>7_

and 262144^=250000.
i Cf. i. 27.
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Therefore x = \\ ,

and (W' i) is a solution -

Otherwise thus.

If any square number is divided into two parts one of

which is its side, the product of the parts added to

their sum gives a cube.

[That is, x (x*
-
x) -f x* - x + x = a cube.]

Let the square be xz
,
and be divided into the parts x> x*x.

Then, by the second condition of the problem,
x^ x* x* = x3 2x* = a cube (less than x3

)
=
(^x)

3
, say.

Therefore Sx3 - i6x2 = x9
,
so that x = ^ ,

and f
1

-,
J

is a solution.

29. To find four square numbers such that their sum added to

the sum of their sides makes a given number 1
.

Given number 12.

Now xs +x + \ = a. square.

Therefore the sum of four squares + the sum of their sides

+ i =the sum of four other squares= 1 3, by hypothesis.

Therefore we have to divide 13 into four squares; then, if

we subtract from each of their sides, we shall have

the sides of the required squares.

1 On this problem Bachet observes that Diophantus appears to assume, here

and in some problems of Book v., that any number not itself a square is the sum of

two or three or four squares. He adds that he has verified this statement for all

numbers up to 325, but would like to see a scientific proof of the theorem. These

remarks of Bachet's are the occasion for another of Fermat's famous notes :
" I have

been the first to discover a most beautiful theorem of the greatest generality, namely this :

Every number is either a triangular number or the sum of two or three triangular

numbers ; every number is a square or the sum of two, three, or four squares; every
number is a pentagonal number or the sum of two, three, four or five pentagonal

numbers; and so on ad infinitum, for hexagons, heptagons and any polygons whatever,

the enunciation of this general and wonderful theorem being varied according to the

number of the angles. The proof of it, which depends on many various and abstruse

mysteries of numbers, I cannot give here ; for I have decided to devote a separate and

complete work to this matter and thereby to advance arithmetic in this region of inquiry

to an extraordinary extent beyond its ancient and known limits."

Unfortunately the promised separate work did not appear. The theorem so far as it

relates to squares was first proved by Lagrange (Nottv. Memoires de FAcad. de Berlin,

annee 1770, Berlin 1772, pp. 123-133; Oeuvres, in. pp. 189-201), who followed up
results obtained by Euler. Cf. also Legendre, Zahlentheorie, tr. Maser, I. pp. 212 sqq.

Lagrange's proof is set out as shortly as possible in Wertheim's Diophantus, pp. 324-330.

The theorem of Fermat in all its generality was proved by Cauchy (Oeuvres, ile serie,

Vol. VI. pp. 320-353) ; cf. Legendre, Zahlentheorie, tr. Maser, II. pp. 332 sqq.
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Now i 3 = 4 + 9 = (f! + f!) +(W + M)>
and the sides of the required squares are |, T

7
^, {$, |$,

the squares themselves being ,

&-
. &* *QB 100' 100' 100' 100'

30. To find four squares such that their sum minus the sum of

their sides is a given number.

Given number 4.

Now x* x + | = a square.

Therefore (the sum of four squares) (sum of their sides)

+ i =the sum of four other squares = 5, by hypothesis.

Divide 5 into four squares, as ^, |f , ff , ff .

The sides of these squares plus $ in each case are the sides

of the required squares.

Therefore sides of required squares are }, i, ^, -, .

and the squares themselves ^, *?, *, *?.
100' 100' 100' 100

31. To divide unity into two parts such that, if given numbers

are added to them respectively, the product of the two sums gives

a square.

Let 3, 5 be the numbers to be added; x, I # the parts of I.

Therefore (x+ 3) (6 x) = 1 8 + 3x x* = a square = 4^, say;

thus 1 8 + 3* = 5;r
2
,
which does not give a rational result.

Now 5 comes from a square + I
; and, in order that the

equation may have a rational solution, we must sub-

stitute for the square taken (4) a square such that

(the square + i) . 18 + (|)
2 = a square.

Put (m
2 + 1)18 + 2^ = a square,

or 72m2 + 8 1 = a square = (Sm + gf, say,

and m= 18, w2
=324.

Hence we must put

(x+$)(6-x}= 18 + 3^-^2 = 324^r
2
.

Therefore 1 325^- 3^-18 = 0,

* = s
7A = &>

and (
,
-~\ is a solution.

Otherwise thus.

The numbers to be added being 3, 5, assume the first of

the two parts to be x 3 ;
the second is then 4 x.

Therefore x (9
-
x} = a square = 4^, say,

and *=\-
But I cannot take 3 from f ,

and x must be > 3 and < 4.

1 Observe the solution of a mixed quadratic equation.
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Now the value ofx comes from 9/(a square + i), and, since

x> 3, this square + I should be<3, so that the square
must be less than 2; but, since x <4, the square 4- I

must be > f ,
so that the square must be > |.

Therefore I must find a square lying between and 2, or

between f$ and ^.
W or ft satisfies the condition.

Put now x (9
-
x) = $%x* ;

therefore x = ift,

and
(", *)

is a solution.

32. To divide a given number into three parts such that

the product of the first and second the third gives a square.

Given number 6.

Suppose third part = x, second = any number less than 6,

say 2; therefore first part
= ^ x.

The two remaining conditions require that 8 2x x a

square,

or
'

t

[ are both squares. [Double-equation.]

This does not give a rational result ("is not rational "), since

the ratio of the coefficients ofx is not a ratio of a square
to a square.

But the coefficients of x are 2 - I and 2 + I
;
therefore we

must find a numbery to replace 2 such that

(y + i)j(y
-

i)
= ratio of square to square = , say.

Therefore y + i = 4y 4, and y = f .

Put now second part =f ;
therefore first = -^ x.

Therefore &
$- \xx='& square.

That is,

'X
I are both squares,

260 24^)
or , \ are both squares.

65 - 24*]
The difference = 195 = 15 . 13;

we put therefore \ (i 5 1 3)*
= 65 24*, and x = f .

Therefore the required parts are f-, -, -V.

i Fermat observes: "The following is an easier method of solution. Divide the

number 6 into two in any manner, e.g. into 5 and i. Divide their product less i, that is

4, by 6, the given number: the result is -. Subtracting this first from 5 and then from i,
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33. To find two numbers such that the first with a fraction

of the second is to the remainder of the second in a given ratio,

and also the second with the same fraction of the first is to the

remainder of the first in a given ratio.

Let the first with the fraction of the second = 3 times the

remainder of the second, and the second with the

same fraction of the first = 5 times the remainder of

the first.

[The fraction may be either an aliquot part or not, TO

avro fj.epof or rd avra fiepij as Diophantus says,

following the ordinary definition of those terms ("the
same part" or "the same parts")-, cf. Euclid VII.

Deff. 3, 4-]

Let the second =x+ i, and let the part of it received by
the first = i

;

therefore the first = 3^1 (since ^x i + I = yc\
Since the second plus the fraction of the first = 5 times

the remainder of the first,

the second + the first = 6 times the remainder of the first.

And first + second = 4* ;
therefore remainder of first

=
f;r, and hence the second receives from the first

-$x\ \x or \x i.

We have therefore to secure that \x\ is the same

fraction of yc i that I is ofx+ i.

This requires that (&x i)(^+ i)
=

(3^r i). I
;

therefore \x* + %x - i = 3* i, and x = f .

Accordingly the numbers are f, ^; and I is ^ of the

second.

we have as remainders and -, which are the first two parts of the number to be

divided; the third is therefore -."
3

That is, if , 77, f be the required parts of the number a, Fermat divides a into two

parts x, a - x and then puts

whence

The three general expressions in x satisfy the conditions, and x may be given any
value <a.



192 THE ARITHMETICA

Multiply by 7 and the numbers are 8, 12, and the fraction

is ^; but 8 is not divisible by 12: so multiply by 3,

and (24, 36) is a solution.

Lemma to the next problem.

To find two numbers indeterminately such that their product

together with their sum is a given number.

Given number 8.

Assume the first number to be x, the second 3.

Therefore $x+x+ 3= given number = 8; * = f, and the

numbers are f , 3.

Now | arises from (8
-

3)/(3 + i), where 3 is the assumed

second number.

We may accordingly put for the second number (instead

of 3) any (undetermined) number whatever 1

; then,

substituting this for 3 in the above expression, we
have the corresponding first number.

For example, we may take*- I for the second number;

the first is then 9 - x divided by x, or -
I.

34. To find three numbers such that the product of any two

together with the sum of those two makes a given number 2
.

1 The Greek phrase is eav dpa rdfw/xo' rbv fi?
v

s
ov

oiovS^irore (otonS^Trore j in Lemma
to iv. 36), "If we make the second" (literally "put the second at") "any s whatever."

But the s is not here, as it is in the Lemma to IV. 36, the actual x of the problem, for

Diophantus goes on to say
"
E.g. let the second be x- i." In the Lemma to iv. 34 the

corresponding expression is "any quantity whatever" (offovSjiroTe without s). The

present Lemma amounts to saying that, if xy+ x+y= a, then x= (a-y)l(y+i).
2 This determinate set of equations can of course be solved, with our notation, by

a simple substitution.

The equations yz +y+ z= a\

are equivalent to

where

The solution is =x + i

In order that the result may be rational, it is only necessary that (a+ i) (l>+ i) (c + i)

should be a square ; it is not necessary that each of the expressions a + t
,

b + i , c + i

should be a square, as Diophantus says.
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Necessary condition. Each number must be i less than some
square

1
.

Let (product + sum) of first and second = 8.

second and third =
15.

third and first =
24.

By the first equation, if we divide(8- second)by(second+ 1
),

we have the first number.

Let the second number be x i.

Therefore the first=

Similarly the third number = -- i.

The third equation remains, which gives

The numbers are 33,
2

,

or, when reduced to a common denominator, @, f* 34?.
DO DO OO

Lemma to thefollowing problem.

To find two numbers indeterminately such that their product
minus their sum is a given number.

Given number 8.

First numbers, second 3, suppose; therefore

(product)
-
(sum) = ?>x x*$ = 2x 3 = 8, and x^\.

The first number is therefore 5^, the second 3.

But 5^ comes from (8 + 3)/(3
-

i), and we may put for 3

any number whatever.

E.g. put the second number =x+\; the first is then ^+9

divided by x, or i +-.

35. To find three numbers such that the product of any two

minus the sum of those two is a given number 2
.

Necessary condition. Each of the given numbers must be i less

than some square
2

.

Let (product sum) of first and second = 8.

M .,
second and third = 15.

third and first = 24.

1 See last paragraph of preceding note.

2 The notes to iv. 34 above apply, mutatis mutandis, to this problem as well.

H. D.
J 3
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By the first equation, if we divide (8 + second) by

(second
-

i), we have the first number.

Assuming x + i for the second number, we have i + -

for the first.

Similarly i H is the third number, and two conditions

are satisfied.

The third gives
l~ -

i = 24, and x= -1
/.

The numbers are ^, , ,

or, with a common denominator, ~s
, ^, ^.

Lemma to thefollowingproblem.

To find two numbers indeterminately such that their product
has to their sum a given ratio.

Let the given ratio be 3:1, the first number x, the

second 5.

Therefore 5^=3(5 + -*'),
x = 7\', and the numbers are

7i 5-

But 7^ arises from 15 divided by 2, while the 15 is the

second number multiplied by the given ratio, and

the 2 is the excess of the second number over the

ratio.

Putting therefore x (instead of 5) for the second number,
we have, for the first number, 3x divided by x -

3.

The numbers are therefore ^xl(x 3), x.

36. To find three numbers such that the product of any two

bears to the sum of those two a given ratio.

Let product of first and second be 3 times their sum.

second and third be 4 times their sum.

third and first be 5 times their sum.

Let second number be.r; the first is therefore ^xl(x 3),

by the Lemma, and similarly the third is <\x\(x 4).

T>X A.X ( \x A.X \

Lastly
-^

.
-^ =

5 (
-^ + -^ _

)x-i . *-4 'U-3 *-4/'
or 1 2 AT

2 = 35^r
2

Therefore * = J^,

and the numbers are &
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37. To find three numbers such that the product of any two
has to the sum of the three a given ratio 1

.

Let product of first and second = 3 times sum of the three,
of second and third =4

of third and first = 5

First seek three numbers such that the product of any two
has to an arbitrary number (say 5) the given ratio.

Then product of first and second = 15; and, if x be the

second, the first is i$jx.

The product of second and third = 20; therefore third

It follows that 20. i5/;r'
2 = 25.

And, if the ratio of 20 . 1 5 to 25 were that of a square to a

square, the problem would be solved.

Now 15 = 3.5, and 20 is 4. 5, the 3 and 4 being fixed by
the original hypothesis, but 5 being an arbitrary

number.

We must therefore find a number m (to replace 5) such

that I2m2

/$m = ratio of a square to a square.

Thus 1 2m2
. 5z =6om3 = a square = poow2

, say ;
and m= 1 5.

Let then the sum of the three numbers be 15.

Product of first and second is therefore 45, and first = 45/^r.

Similarly third = 6olx.

Therefore 45 . 6o/x
2 = 75, and x = 6.

Therefore the numbers are 7|, 6, 10, and the sum of

these = 2 3^.

Now, if this sum ^vere 1 5 instead, the problem would be

solved.

1 Loria (pp. cit. p. 130) quotes this problem as an instance of Diophantus' ingenious

choice of unknowns. Here the equations are, with our notation,

xy= <(*+)> + z),

and Diophantus chooses as his principal unknown the sum of the three numbers,

x+y + z w, say.

We may then write x=cw\y, z-aw\y, so that zx= acwi
\y

1= bw, and
_j/

2= w.

Putting W = -T
2
, we have

from which, by eliminating x, y, z, we obtain =

Hence x=(6f+fa + a6)la,

132
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Put therefore for the sum of the three numbers 1 5^
2
,
and

for the numbers themselves J\x, 6x, lox.

Therefore 2^x = \$x
z
,
so that x =$s ,

and 35M, *, 4?o
is a solution>

30 3" 30

38. To find three numbers such that their sum multiplied

into the first gives a triangular number, their sum multiplied into

the second a square, and their sum multiplied into the third a cube.

Let the sum be x-, and let the numbers be m/x
2
, n/x*,p/x-,

where m
t n,p are a triangular number, a square and

a cube respectively ;

say first number = 6/x*, second 4/*r
2

,
third S/x

2
.

But the sum is x2
;
therefore i8/x

z = x2
,
or i8=;r4

.

Therefore we must replace 18 by some fourth power.
But 1 8 = sum of a triangular number, a square and a cube.

Let x* be the required fourth power, which must therefore be

the sum of a triangular number, a square and a cube.

Let the square be x* 2x* + i
;

therefore the triangular number + the cube = 2x* i.

Let the cube be 8; therefore the triangular number is

2X2
9.

But 8 times a triangular number + i = a square ;
therefore

\6x~- 71 = a square = (4^ i)
2
, say; thus x = g, the

triangular number is 153, the square 6400 and the

cube 8.

Assume then as the numbers I53/-*"
2
, 64<X)/r

2
, S/x

2
.

Therefore 6$6i/x* = x*, or ^ = 6561, and x=g.

1 The procedure may be shown more generally thus.

Let , -TI, f be the required numbers; suppose

It follows that

Suppose now that /3=j-
2 -32

[Diophantus and Bachet assume &= i].

Then ^tlU^-^3.
Eight times the left hand side plus i gives a square (by the property of triangular

numbers) ; that is,

(20
--

1)
2= i6sV - 8z4 - 8-y

3 + i ='a square
=

(40jr-/&)
2
, say,
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39. To find three numbers such that the difference of the

greatest and the middle has to the difference of the middle and the
least a given ratio, and also the sum of any two is a square.

Ratio 3 : i. Since middle number + least = square, let the

square be 4.

Therefore middle > 2
;

let it be x + 2, so that least = 2-x.
Therefore difference of greatest and middle = 6x, whence

the greatest = 7x + 2.

Therefore , I are both squares. [Double-equation]

Take the difference 2.x, split it into factors, say \x, 4, and

proceed by the rule
;
therefore x= 112.

But I cannot take 1 12 from 2; therefore x must be found

to be < 2, so that 6x + 4< 16.

Thus there are to be three squares 8^+4, 6^ + 4 and 4
(the 4 arising from 2 . 2), and the difference of the

greatest and middle is ^ of the difference of the

middle and least.

We have therefore to find three squares having this property
and such that the least = 4 and the middle < 16.

Let side of middle square be z + 2
;
therefore excess of

middle over least = & + 42, whence excess of greatest

over middle = \z^ + \%z, and therefore the greatest

This must be a square ; therefore, multiplying by 9, we have

1 2z* + 482 + 36 = a square,

whence .,

OKZ

But
a

^ must be integral, and therefore a integral, so that -(43^-^-1) must be

integral ; that is, must be integral.

Bachet assumes that it is necessary, with Diophantus, to take k=i, observing that

trial will show that the problem can hardly be solved otherwise. On this Fermat remarks

that Bachet's trial had not been carried far enough. We may, he says, put for -y
3
any

cube, for instance, with side of the form 3+i. Suppose, for example, we take 7
3

.

Then [2 being i] we have to make

2.** - 344 a triangle,

and therefore 16^-2751 a square, and we may take, if we please, 4^-3 as the side of

this square [so that k is in this case 3].

By varying the cubes we may use an unlimited variety of odd numbers, besides 3,

as values for k which will satisfy the required condition.

Loria (op. cit. p. 138) points out that the problem could have been more simply

solved by substituting x fcr *2 and 2 for 22 in the above assumptions. The ultimate

expression to be made a square would then have been 162* -8s2 -873+ r, and we could

have equated this to X2
,
thus finding jr.
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or 3r
2 + 1 2.z + 9 = a square

= (mz 3)
2

, say.

It follows that z (6m + \2)\(in^ 3), which must be < 2.

Therefore 6m + 12 < 2m2
6, or 2mz > 6m + 18.

"When we solve such an equation
1

,
we multiply half the

coefficient of x into itself this gives 9 then multiply

the coefficient of X* into the units 2 . 18 = 36 add

this last number to the 9, making 45, and take the

side [square root] of 45, which is not less than 7;

add half the coefficient of x making a number not

less than 10 and divide the result by the coefficient

of;tr2
;
the result is not less than 5."

[3
2 + 18.2 = 45, and 1^45 +f is not less than f +|.]

We may therefore put m =
f + |, or 5, and we thus have

Therefore z = \\, and the side of the middle square is

^f , the square itself being -^p.

Turning to the original problem, we put 6;r+ 4 = 1f$L
,
and

x = J^R, which is less than 2.

The greatest of the required numbers = yx + 2 =

the middle =^+2=^,
and the least = 2 - x =&

726

The denominator not being a square, we can make it

a square by dividing out by 6; the result is

1834^
121

'

121
'

121
'

or again, to avoid the in the numerators, we may
multiply numerators, and denominators, by 4; thus

7
. '

isaso,ution'.

1 I have quoted Diophantus' exact words here, with the few added by Tannery,

"making a number not less than 10... coefficient of jc
2
," in order to show the precise

rule by which Diophantus solved a complete quadratic.

When he says v/45 is not less than 7, Diophantus is not seeking exact limits. Since

^/45 is between 6 and 7 we cannot take a smaller integral value than 7 in order to

satisfy the conditions of the problem (cf. p. 65 above).
2 A note in the Invmtum Novum (Part n, paragraph 26) remarks upon the prolix and

involved character of Diophantus' solution and gives a shorter alternative. The problem
is to solve

-rt=w (>}-{), (!>>?> and ^ = 3, say)
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40. To find three numbers such that the difference of the

squares of the greatest and the middle numbers has to the differ-

ence of the middle and the least a given ratio, and also the sum of

each pair is a square.

Ratio 3:1.
Let greatest + middle number = the square \6x*\ therefore

greatest^*
8

: let it be 8^ + 2
;
hence middle=8^- 2.

And, since greatest + middle > greatest + least,

16^ > (greatest + least) > 8x*
;

let greatest + least = ojr
2
, say ;

therefore least =x* 2.

Now difference of squares of greatest and middle = 64**,

and difference of middle and least = jx?.

But 64 is not equal to 3.7 or 21.

Now 64 comes from 32.2; therefore we must find a

number m (in place of 2) such that 32m =21.

Therefore m = f.
Assume now greatest number = &x- + f, middle = 8x* ,

least = ;r
2 -f.

[And difference of squares of greatest and middle

The only condition left is: middle + least = square; that is,

a square = (yc 6Y, say.

Therefore x--

and

Take an arbitrary square number, say 4, for the sum of ij, f; suppose 2 + .1 = 17, 2 - -*-

sothatij-i-=wr; therefore -
17
= 3(1;- f)= 6*. whence f= 2 + 7*.

The last two conditions require that

4+
?*l shall be squares.

4+ drf

Replace x by -)?+-?. This will make 4+ 6x a square. It remains that

-(*?)*+
71105 -K^'iM?" 5

)'

and y= , so that x
=\y*+~7=*^

The numbers are therefore -
, i

-
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BOOK V

i. To find three numbers in geometrical progression such that

each of them minus a given number gives a square.

Given number 12.

Find a square which exceeds 12 by a square. "This is

easy [u. 10]; 42! is such a number."

Let the first number be 42^, the third ,r
2

;
therefore the

middle number = 6\x.

Therefore ^ [ are both squares;
6\x- 12

j

their difference = xz

6\x = x (x 6) ;
half the difference

of the factors multiplied into itself =J^; therefore,

putting 6\x- 12=^, we have ^= ffi,

2. To find three numbers in geometrical progression such that

each of them when added to a given number gives a square.

Given number 20.

Take a square which when added to 20 gives a square,

say 1 6.

Put for one of the extremes 16, and for the other x*, so

that the middle term = ^x.

,, r *" + 20 )
Therefore \ are both squares.

4^+20 j

Their difference is x* \x = x (x 4), and the usual method

gives $x + 20 = 4, which is absurd, because the 4

ought to be some number greater than 20.

But the 4 = \ (16), while the 16 is a square which when

added to 20 makes a square; therefore, to replace 16,

we must find some square greater than 4 . 20 and

such that when increased by 20 it makes a square.

Now 8 1 > 80; therefore, putting (m + 9)
2 for the required

square, we have

(m + p)
2 + 20 = square = (;// 1 1 )

2
, say ;

therefore m =
,
and the square = (9^)" = 90^.
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Assume now for the numbers 90^, Q\X, x-, and we have

The difference =x(x <)$), and we put
Therefore x = -^, and

3. Given one number, to find three others such that any one of

them, or the product of any two of them, when added to the given

number, gives a square.

Given number 5.
" We have it in tlie Porisms that if, of two numbers, each,

as well as their product, when added to one and the

same given number, severally make squares, the

two numbers are obtained from the squares of con-

secutive numbers 1
."

Take then the squares (x+ 3)'
2

, (x+^f, and, subtracting

the given number 5 from each, put for the first

number ;r
2
-j-6;tr+4, and for the second

and let the third 2 be twice their sum minus i, or

4_r
2 + 28x + 29.

1 On this Porism, see pp. 99, 100 ante.

2 The Porism states that, if a be the given number, the numbers j^-a,

satisfy the conditions.

In fact, their product + a={x (x+ i)}
2 - a (

3+ wr+i) + a*+a

Diophantus here adds, without explanation, that, if X, Y denote the above two numbers,

we should assume for the third required number Z= i (X+ Y)-i. We want thrte numbers

such that any two satisfy the same conditions as X, Y, Diophantus takes for the third

Z= i.(X+ Y)- i because, as is easily seen, with this assumption two out of the three

additional conditions are thereby satisfied.

For Z=2(X+Y)-i=i(2Jcl+ix+i)-4a-i

therefore XZ+a=Jt?(*jc+i)*-a{('ix
= Jt

2
(2.*+ i)

s - a . +x (ix -f i) + 4
2

while

The only condition remaining is then

Z+a=a square,

or (2jr+i)
s -3

and x is found.

Cf. pp. ioo, 104 above.
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Therefore 43? + 2%x+ 34 = a square = (2x 6)
2
, say.

Hence * = ^, and
(**, ^, ^) is a solution'.

4. Given one number, to find three others such that any one

of them, or the product of any two, minus the given number gives

a square.

Given number 6.

Take two consecutive squares x*, x* + 2x + i.

Adding 6 to each, we assume for the first number x* + 6,

and for the second x2 + 2x + 7.

For the third 2 we take twice the sum of the first and

second minus i, or 4^ + 4^+25.
Therefore third minus 6 = ^.x- + 4.*+ 19= square =(2x6)2

,

say.

Therefore * = |,

"
(?? %, w) is a solution -

[The same Porism is assumed as in the preceding problem
but with a minus instead of a plus. Cf. p. 99 above.]

5. To find three squares such that the product of any two

added to the sum of those two, or to the remaining square, gives

a square.
" We have it in the Porisms" that, if the squares on any two

consecutive numbers be taken, and a third number

be also taken which exceeds twice the sum of the

squares by 2, we have three numbers such that the

product of any two added to those two or to the

remaining number gives a square
3
.

1

Diophantus having solved the problem of finding three numbers , 17, f satisfying

the six equations

Fermat observes that we can deduce the solution of the problem

To find four numbers such that the product of any pair added to a gii-en number

produces a square.

Taking three numbers, as found by Diophantus, satisfying the above six conditions,

we take x+ i as the fourth number. We then have three conditions which remain to be

satisfied. These give a "
triple-equation

"
to be solved by Fermat's method.

2
Diophantus makes this assumption for the same reason as in the last problem, v. 3.

The second note on p. 201 covers this case if we substitute - a for a throughout.
3 On this Porism, see pp. 100-1 ante.
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Assume as the first square x*+2x+ i, and as the second
;r

2 + 4jr+4, so that third number = 4^ + 12*+ 12.

Therefore x* + 3* + 3 = a square = (x - $f, say, and x = f .

Therefore
(|, , ^) is a solution.

6. To find three numbers such that each minus 2 gives a

square, and the product of any two minus the sum of those two,

or minus the remaining number, gives a square.

Add 2 to each of three numbers found as in the Porism

quoted in the preceding problem.
Let the numbers so obtained be

All the conditions are now satisfied 1

, except one, which

gives

4^? + 44: + 6 2 = a square.

Divide by 4, and x- + x + I = a square = (x 2f, say.

Therefore x = \ t

anc*

(
' W' ^s)

is a s l ut i n -

Lemma I to tlie following problem.

To find two numbers such that their product added to the

squares of both gives a square.

Suppose first number x, second any number (;), say I.

Therefore x . I +xz + I =x*+x+ I = a square = (x 2)
2
, say.

Thus x= \, and

($,
i)

is a solution, or (3, 5).

Lemma II to the followingproblem.

To find three right-angled triangles (t.e. three right-angled

triangles in rational numbers-} which have equal areas.

We must first find two numbers such that their product

-f the sum of their squares = a square, e.g. 3, 5, as in

the preceding problem.

1 The numbers are jc2 + 1, (x+i)*+2, i {x*+ (x+ i)
2 + 1} + 2; and if X, Y, Zdenote

these numbers respectively, it is easily verified that

XY-(X+ Y)= (x?+x+i)\ XY-Z=(x*+x?,
XZ - (X+ Z) = (2*2+ x + 2)

2
, XZ - Y= (2.x-

2 +x+ a)
2

,

and FZ-(F+Z) =(2^2+3^+ 3)2, YZ - X = (2*2+ 3^+ 4)2.

2 All Diophantus' right-angled triangles must be understood to be right-angled

triangles with sides expressible in rational numbers. In future I shall say "right-angled

triangle
"
simply, for brevity.
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Now form right-angled triangles from the pairs of

numbers 1

(7, 3), (7, 5), (7>3 + 5)

\t.e. the right-angled triangles (7
2 + 3

2
, 7

2 -
3

2
,
2 . 7 . 3), etc.].

The triangles are (40, 42, 58), (24, 70, 74), (15, 112, 113),

the area of each being 840.
1
Diophantus here tacitly assumes that, if ab + a? + &2= c2

,
and right-angled triangles

be formed from (c, a), (t, b) and (c, a + b) respectively, their areas are equal. The

areas are of course (c
2 - a2

) ca, (c
2 - 32

)
cb and { (a + 6>)'

2 - cz } (a + b) c, and it is easy to

see that each = abc (a + b).

Nesselmann suggests that Diophantus discovered the property as follows. Let the

triangles formed from (n, m), (q, m), (r, m) have their areas equal ; therefore

n (m2
-n*) = q (m

2 - f) = r(r*- m2
).

It follows, first, since nPn - nz=mz
q
-
q
3

,

that m2=
(w3 -

?
3
)/( -f) = 2 + nq + q*.

Again, given (q, m, n), to find r.

We have q (m*
- f] = r(r>- m*),

and m2 -g*=nz+ ng, from above ;

therefore ?(
3 + ?)

= r(r
2 - 2-?-?2

),

or q(n
z + nr) + g*(n+ r)

= r(r*-n*).

Dividing by r+ , we have qn + q*
= r2 - rn ;

therefore (q + r) n= r* - q
2
,

and r=q + n.

Fermat observes that, given any rational right-angled triangle, say z, />, d, where z

is the hypotenuse, it is possible to find an infinite number of other rational right-angled

triangles having the same area. Form a right-angled triangle from z2, ibd\ this gives

the triangle z* + ^b
z d'2, s4-^2^2

, ypbd. Divide each of these sides by iz(!fi-d),

b being >d ; and we have a triangle with the same area ( ~bd\ as the original triangle.

Trying this method with Diophantus' first triangle (40, 42, 58), we obtain as the new

triangle 1412881 1412880 1681

1189
'

1189
'

1189'

The method gives (
, ,

j
as a right-angled triangle with area equal

to that of (3, 4, 5).

Another method of finding other rational right-angled triangles having the same area as

a given right-angled triangle is explained in the Inventum Novum, Part l, paragraph 38

(CEuvres de Fermat, in. p. 348).

Let the given triangle be 3, 4, 5, so that it is required to find a new rational right-

angled triangle with area 6.

Let 3, or + 4 be the perpendicular sides ; therefore

the square of the hypotenuse =*2
+8.*+25 = a square.

Again, the area is - x+ 6 ; and, as this is to be 6, it must be six times a certain square ;

that is, -x + 6 divided by 6" must be a square, and this again multiplied by 36 must

be a square ; therefore

gx -f 36 = a square.

Accordingly we have to solve the double-equation

9* + 36=^1
'
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7. To find three numbers such that the square of any one
the sum of the three gives a square.

Since, in a right-angled triangle,

(hypotenuse)
2 + twice product of perps. = a square,

we make the three required numbers hypotenuses and the

sum of the three four times the area.

Therefore we must find three right-angled triangles having
the same area, e.g.t as in the preceding problem,

(40, 42, 58), (24, 70, 74), (15, ii2, 113).

Reverting to the substantive problem, we put for the

numbers 5&r, 744:, \\^x\ their sum 245* = four times

the area of any one of the triangles = 3360**.

Therefore x=
,

and
( f ,

S*
f

)
is a solution.

Leinma to the followingproblem.

Given three squares, it is possible to find three numbers such

that the products of the three pairs shall be respectively equal to

those squares.

This gives ^= _ 67,5600
1

2405601

2806804
whence * +4=

.-^6S-
The triangle is thus found to be

2896804 7/76485

7405601* 2405601'

The area is 6 times a certain square, namely
/242 I

, the root of which is .

2405001 1551

Dividing each of the above sides by , we obtain a triangle with area 6, namely

Another solution of the double-equation, r= ~^^ P^ jr+4=
4̂ '

leads to

the same triangle ( , , -. ]
as that obtained by Fermat's rule (see above).

The method of the Invenium Nvvum has a feature in common with the procedure in

the ancient Greek problem reproduced and commented on by Heiberg and Zeuthen

(Bibliotheca Mathtmatiea, vm3 , 1907/8, p. 122), where it is required to find a rational

right-angled triangle, having given the area, 5 feet, and where the 5 is multiplied by a

square number containing 6 as a factor and such that the product
" can form the area of

a right-angled triangle." 36 is taken and the area becomes 180, which is the area of

(9, 40, 41). The sides of the latter triangle are then divided by 6, and we have the

required triangle (cf. p. 119, ante).
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Squares 4, 9, 16.

First numbers, so that the others are 4/ar, 9/^5 and 36/^=16.
Therefore -f =f, and the numbers are (i^, 2|, 6).

We observe that x \, where 6 is the product of 2 and 3,

and 4 is the side of 16.

Hence the following rule. Take the product of two sides

(2, 3), divide by the side of the third square 4 [the

result is the first number] ;
divide 4, 9 respectively

by the result, and we have the second and third

numbers.

8. To find three numbers such that the product of any two +

the sum of the three gives a square.

As in Lemma II to the 7th problem, we find three right-

angled triangles with equal areas
;

the squares of

their hypotenuses are 3364, 5476, 12769.

Now find, as in the last Lemma, three numbers such that

the products of the three pairs are equal to these

squares respectively, which we take because each

+ 4 . (area) or 3360 gives a square ;
the three numbers

then are

Affix, z-iy-x ^Ull^x Tannery],
4
it1;tr [

&
lial &;tr Tannery].

It remains that the sum of the three = 3360^.

Therefore ^ffffflr^ [**$$$** Tannery] = 3360;^.

TViprpfnrf* r 3282 4 80 6 f 131299224 /-> 781543 Tannprwli iicrciui c ji
-ftfTSTj-Gg-fG LT3T958~(>55tf U1 W5W20 -idiiiieryj,

and the numbers are ly^ ,

i^gf^ ^ST]

9. To divide unity into two parts such that, if the same given

number be added to either part, the result will be a square.

Necessary condition. The given number must not be odd and

the double of it + i must not be divisible by any prime number

which, when increased by i, is divisible by 4 \i.e. any prime number

of the form 4 i ]
1
.

Given number 6. Therefore 13 must be divided into two

squares each of which >6. If then we divide 13 into

two squares the difference of which < i, we solve the

problem.

1 For a discussion of the text of this condition see pp. 107-8, ante.
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Take half of 1 3 or 6, and we have to add to 6 a small

fraction which will make it a square,

or, multiplying by 4, we have to make - + 26 a square,X
i.e. 26x* + I = a square = (5^+ i)

2
, say, whence x= 10.

That is, in order to make 26 a square, we must add y^, or,

to make 6^ a square, we must add ^^, and

Therefore we must divide 1 3 into two squares siich that their

sides may be as nearly as possible equal to f. [This
is the Tra/Ko-oTT/To? dycayij described above, pp. 95-8.]

Now 1 3
= 2 2 + 3

2
. Therefore we seek two numbers such

that 3 minus the first = f, so that the first = ^ ,
and

2 plus the second = f, so that the second = $.
We write accordingly (ii^r + 2)

2
, (3 gxf for the required

squares [substituting x for ^].
The sum =2O2^2 - io^+ 13 = 13.

Therefore x= fa, and the sides are fjft, fflf .

Subtracting 6 from the squares of each, we have, as the

parts of unity,

4843 5358
I020I

'

IO2OI
'

10. To divide unity into two parts such that, if we add different

given numbers to each, the results will be squares.

Let the numbers 1 be 2, 6 and let them and the unit be

represented in the figure, where DA =2, AB=\,
BE = 6, and G is a point in AB so chosen that DG,
GE are both squares.

D A GB E

Now DE =
g. Therefore we have to divide 9 into two

squares such that one of them lies between 2 and 3.

Let the latter square be *, so that the other is 9-*',

where 3 >^ 2 >2.

Take two squares, one > 2, the other <3 [the former

being the smaller], say fff , ff.

1 Loria (op. cit. p. isow.), as well as Nesselmann, observes thai Diophantus omits to

state the necessary condition, namely that the sum of the two given numbers plus i must

be the sum of two squares.
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Therefore, if we can make x* lie between these, we shall

solve the problem.
We must have x> || and < -ff.

Hence, in making 9^ a square, we must find

x>ft and < if.

Put 9 xz =
(3 mxf, say, whence x = 6mf(m

2 + i
).

17 6m , 10
Therefore < - < .

12 W2 +I 12

The first inequality gives Jim > iym
z + 17 ;

and

36
2 -

17. 17= 1007,

the square root of which 1
is not greater than 31 ;

therefore m $
3I+36

, i.e.m^.
17 ^17

Similarly from the inequality igm*+ I9>?2m we find 2
'

Let m =
3^. Therefore 9 ;r

2= (3 3|^)
2
,
and ^=

Therefore *2=
fiHf,

and the segments of i are

ii. To divide unity into three parts such that, if we add the

same number to each of the parts, the results are all squares.

Necessary condition*. The given number must not be 2 or any

multiple of 8 increased by 2.

Given number 3. Thus 10 is to be divided into three

squares such that each > 3.

Take of 10, or 3^, and find x so that -

2
-f 3| may be a

square, or 3cur
2 + i =a square = ($x+ i)

2
, say.

Therefore ^=2,^ =
4, i jx*

=
,
and

3V + 3i =W = a square.

Therefore we have to divide 10 into three squares each of

which is as near as possible to -1^1
-.

Now 10 = 3
2 + i

2 = the sum of the three squares 9, ^f , -f^.

Comparing the sides 3, |, | with
-y-,

or (multiplying by 30) 90, 24, 18 with 55, we must

make each side approach 55.

1 I.e. the integral part of the root is ~t> 31. The limits taken in each case are afortiori
limits as explained above, pp. 61-3.

2 See p. 6 1, ante.

3 See pp. 108-9, ante -
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[Since then M = 3 ~M= f+M = f + fl> we put for the
sides of the required numbers

3-35*. 3i*+ , 37*+f.
The sum of the squares = 3555^- n6>+ 10= 10
Therefore *=&&,

and this solves the problem.

12. To divide unity into three parts such that, if three different

given numbers be added to the parts respectively, the results are
all squares.

Given numbers 2, 3, 4. Then I have to divide 10 into

three squares such that the first > 2, the second > 3,

and the third > 4.

Let us add of unity to each, and we have to find three

squares such that their sum is 10, while the first lies

between 2, 2j, the second between 3, 3$, and the

third between 4, 4^.

It is necessary, first, to divide 10 (the sum of two

squares) into two squares one of which lies between

2, 2^; then, if we subtract 2 from the latter square,
we have one of the required parts of unity.

Next divide the other square into two squares, one of

which lies between 3, 3^;

subtracting 3 from the latter square, we have the second

of the required parts of unity.

Similarly we can find the third part
1
.

1
Diophantus only thus briefly indicates the course of the solution. Wertheim solves

the problem in detail after Diophantus' manner ; and, as this is by no means too easy,

I think it well to reproduce his solution.

I. It is first necessary to divide 10 into two squares one of which lies between i

and 3. We use the wapffb-nrrot dywyj.
The first square must be in the neighbourhood of aJ ; and we seek a small fraction

-g which when added to t\ gives a square: in other words, we must make
4(

2
4+:is)

a square. This expression may be written 10+ ( -
J

, and, to make this a square, we put

107*+ i =(3^+1)*, say,

whencey= 6, ^=36, ^=144, so that *J+ ^= =
(||j

, which is an approximation

to the first of the two squares the sum of which is 10.

The second of these squares approximates to 7^, and we seek a small fraction -5 such

that 7i+^ is a square, or 30+ {

-
J
=30 + (

-J , say =a square.

H. D. 14
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13. To divide a given number into three parts such that the

sum of any two of the parts gives a square.

Given number 10.

Put 30jr + i = ($y + i )
2

, say ;

thereforey 2, y-= 4, x2
~i6, so that 7^ + -^

= ' 2 * = / \ = (
)

.

Now, since io=i 2 + 3
2
, and i2=i+ , while ^ = 3-^-,

12 12 12
a

12'

we put (i + 7-*)
2 + (3 3^)

a= 10, [Cf. v. 9]

so that x= ,

Therefore the two squares into which 10 is divided are -s-^* and ^ , and the first of
041 041

these lies in fact between 2 and 2^.

II. We have next to divide the square
~ into two squares, one of which, which

we will call x'2 , lies between 3 and 4. [The method of V. 10 is here applicable.]

Instead of 3, 4 take ^, , as the limits.

Therefore ^~ <x3< -\ ,

10 16

4 4

, 6561 /8i , YAnd
-g-

*" must be a square =1 kx \ , say,

which gives X
=^(^kr

k has now to be chosen such that

<'> id^r!'
from which it follows that ^<2'8...,

162/6 8
and (2) !<-

29 (i+^
2
) 4

whence ^>2'3....

We may therefore put k= i-$.

Therefore x=^, jfl=^^ t

841 707281

6561
and

g
x-

The three required squares into which 10 is divided are therefore

1849 2624400 2893401

841
'

707281
'

707281

And if we subtract 2 from the first, 3 from the second and 4 from the third, we obtain

as the required parts of unity

14044? 50*557 64277

707281' 707281' 707281'
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Since the sum of each pair of parts is a square less than

10, while the sum of the three pairs is twice the

sum of the three parts or 20,

we have to divide 20 into three squares each of which

is < io.

But 20 is the sum of two squares, 16 and 4;

and, if we put 4 for one of the required squares, we
have to divide 16 into two squares, each of which is

< 10, or, in other words, into two squares, one of which

lies between 6 and 10. This we learnt how to do 1

[V. io].

We have, when this is done, three squares such that

each is < io, while their sum is 20 ;

and by subtracting each of these squares from io we
obtain the parts of io required.

14. To divide a given number into four parts such that the

sum of any three gives a square.

Given number io.

Three times the sum of the parts = the sum of four squares.

Therefore 30 has to be divided into four squares, each of

which is < io.

(i) If we use the method of approximation
we have to make each square approximate to

1 Wertheim gives a solution in full, thus.

Let the squares be Jt
2
, 16-x2,

of which one, jc
2

,
lies between 6 and io.

Put instead of 6 and io the limits and 9, so that

To make 16 - x2 a square, we put

i6-**=(4-
86

whence r=
I+l

These conditions give, as limits for k, 2-84... and vti... .

We may therefore e.g. put k= i\.

Then *=*?, , = ??, i6-*=?3.
29 841 841

6400 7056
The required three squares making up 20 are 4,

-g-y-
, -gp

.

Subtracting these respectively from io, we have the required parts of the given number

- 2010 1354
io, namely 6, -^, -^p

142
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then, when the squares are found, we subtract each

from 10, and so find the required parts.

(2) Or, observing that 30= 16 + 9 + 4+ i,we take 4, 9 for

two of the squares, and then divide 17 into two squares,

each of which < 10.

If then we divide 17 into two squares, one of which lies

between 8| and 10, as we have learnt how to do 1

[cf. V. 10], the squares will satisfy the conditions.

We shall then have divided 30 into four squares, each of

which is less than 10, two of them being 4, 9 and the

other two the parts of 17 just found.

Subtracting each of the four squares from 10, we have the

required parts of 10, two of which are I and 6.

15. To find three numbers such that the cube of their sum
added to any one of them gives a cube.

Let the sum be x and the cubes JX*, 26**, 63^.
Therefore 96>

3 =
^-, or <)6x*= I.

But 96 is not a square; we must therefore replace it by a

square in order to solve the problem.

1 Wertheim gives a solution of this part of the problem.

I /2\ 2

As usual, we make 8 + -

t , or 34 + (
-

I , a square.

Putting
- = -

, we must make 34 + (

-
)

a square.

Let 34J/
2 + i = a square= (6>

-
i)

2
,

and we obtain
}>
= 6, y*= $6, ^=144.

Thus 8 i +^ = ill5 =
144 i 44

and is an approximation to the side of each of the required squares.

Next, since 17= i
2 + 4

2
, and ^ = r +^= 4 - ^ ,

12 12 *
12

we put i7 = (i + 2 3;r)
2 + (4 -i3.r)

2
,

and we obtain x = -^-
.

349

-^-^
Subtracting each of these from 10, we have the third and fourth of the required parts

of 10, namely

185754 I79M
121801" 121801"
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Now 96 is the sum of three numbers, each of which is i less
than a cube;

therefore we have to find three numbers such that each
of them is a cube less i, and the sum of the three
is a square.

Let the sides of the cubes 1 be m + i, 2 - m, 2, whence the
numbers are m3 + 3m2 + $m, 7

-
1 2m + 6m' - m3

, 7 ;

their sum = gm2 - gm + 14 = a square = (3^ - 4)', say ;

therefore m =
-^,

and the numbers are 4M|, i&HJ 7.o375 J 3375 * /

Reverting to the original problem, we put x for the sum of
the numbers, and for the numbers respectively

whence

that is (if we divide out by 15 and by x),

2916**= 225, and x=\\.
The numbers are therefore found.

1 6. To find three numbers such that the cube of their sum
minus any one of them gives a cube.

Let the sum be x, and the numbers \x*, ffx
3
, ff^

3
.

Therefore fm^> = ^,

and, if ff|f were the ratio of a square to a square, the

problem would be solved.

But ff|| = 3
-

(the sum of three cubes).

Therefore we must find three cubes, each of which < i,

and such that (3
- their sum) = a square.

If, a fortiori, the sum of the three cubes is made < i, the

square will be > 2. Let 2
it be 2\.

1 If a3
, 3, c3 are the three cubes, so that aP + fi + c3 - 3 has to be a square, Diophantus

chooses c3 arbitrarily (8) and then makes such assumptions for the sides of a3, ft
3

, being
linear expressions in m, that, in the expression to be turned into a square, the coefficient

of m3
vanishes, and that of w2 is a square. If =

111, the condition is satisfied by

putting l>= 3#i -m, where k is any number.
3
Bachet, finding no way of hitting upon 2^ as tne particular square to be taken

in order that the difference between it and 3 may be separable into three cubes, and

observing that he could not solve the problem if he took another arbitrary square between

i and 3, e.g. 2^, instead of sj, concluded that Diophantus must have hit upon 2$,

which does enable the problem to be solved, by accident.

Fermat would not admit this and considered that the method used by Diophantus for

finding 2^ as the square to be taken should not be difficult to discover. Fermat accord-

ingly suggested a method as follows.

Let JT- i be the side of the required square lying between i and 3. Then 3
-
(x

-
i)

2

= 2 + ix - jr
2

, and this has to be separated into three cubes. Fermat assumes for the sides
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We have therefore to find three cubes the sum of which

=i or m\
that is, we have to divide 162 into three cubes.

But 162= 125+64- 27 ;

and "we have it in the Porisms" that the difference of

two cubes can be transformed into the sum of two

cubes 1
.

Having thus found the three cubes 2
,
we start again, and

x=2\x*, so that^=|.
The three numbers are thus determined.

of two of the required cubes two linear expressions in x such that, when the sum of their

cubes is subtracted from i + ix- x2
, the result only contains terms in x* and x3 or in x

and units.

The first alternative is secured if the sides of the first and second cubes are i x and

i + x respectively ; for

This latter expression has to be made a cube, for which purpose we put

j^_26^_ _W
3*3~

4*
27 ~^7~'

Say>

which gives a value for x. We have only to see that this value makes -x less than i,

and we can easily choose m so as to fulfil this condition.

[E.g. suppose * = 5, and we find x= -
, so that

i 13 i 20 72-x= -2
, i x=

, i+x=,
3 33 3 33 33

and the side of the third cube is -
.

We then have three cubes which make up the excess of 3 over a certain square ; but,

while the first of these cubes is < i, the second is > i and the third is negative. Hence
we must, like Diophantus, proceed to transform the difference between the two latter

cubes into the sum of two other cubes.

It will, however, be seen by trial that even Fermat's method is not quite general, for

it will not, as a matter of fact, give the particular solution obtained by Diophantus in

which the square is 2^.
1 On the transformation of the difference of two cubes into the sum of two cubes, see

pp. 101-3, ante.

2 Vieta's rule gives 4
3 -

3
3= (^Y + (^Y-

II follows that

3_i62_/s\ 3 /ioi\ 3 / 20 \ 3

o

and, since Xs =
, the required numbers are

9.8
210 27

8 4998267 _8_ 20338417
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17. To find three numbers such that each of them minus the

cube of their sum gives a cube.

Let the sum be x and the numbers 2jt*, 9**, 2&r*.

Therefore y^x- = i
;

and we must replace 39 by a square which is the sum
of three cubes + 3 ;

therefore we must find three cubes such that their sum
+ 3 is a square.

Let their sides 1 be m, 3 m, and any number, say I.

Therefore gm* + 31 27^ = a square = (30*
-

7)*, say, so

that m =
,
and the sides of the cubes are f, f ,

I.

Starting again, we put x for the sum, and for the numbers

whence 1445^=125, ^ =^, and x=.fr.
The required numbers are thus found.

1 8. To find three numbers such that their sum is a square and

the cube of their sum added to any one of them gives a square.

Let the sum be Xs and the numbers 3*-*, &r8
,

I $x*.

It follows that 26x* = i
; and, if 26 were a fourth power, the

problem would be solved.

To replace it by a fourth power, we have to find three

numbers such that each increased by I gives a square,

while the sum of the three gives a fourth power.

Let these numbers be /* 2tn*, m* + 2m, m*2m [the sum

being m*] ;
these are indeterminate numbers satisfying

the conditions.

Putting any number, say 3, for m, we have as the required

auxiliary numbers 63, 15, 3.

Starting again, we put x* for the sum and 3**, 1 5**, 63** for

the required numbers,

and we have 8 !;** = .*, so that;r= .

The numbers are thus found ( , ,

J

19. To find three numbers such that their sum is a square and

the cube of their sum minus any one of them gives a square

[There is obviously a lacuna in the text after this enunciation ;

for the next words are " And we have again to divide 2 as before"

1 Cf. note on V. 15. In this case, if one of the cubes is chosen arbitrarily and m*

is another, we have only to put (3**
- m) for the side of the third cube in order that, in the

expression to be made a square, the term in m* may vanish, and the term in m* may be a

square.
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whereas there is nothing in our text to which they can refer, and

the lines which follow are clearly no part of the solution of V. 19.

Bachet first noticed the probability that three problems inter-

vened between v. 19 and V. 20, and he gave solutions of them.

But he seems to have failed to observe that the eight lines or so in

the text between the enunciation of V. 19 and the enunciation of

V. 20 belonged to the solution of the last of the three missing

problems. The first of the missing problems is connected with

V. 1 8 and 19, making a natural trio with them, while the second and

third similarly make with V. 20 a set of three. The enunciations

were doubtless somewhat as follows.

iga. To find three numbers such that their sum is a square
and any one of them minus the cube of their sum gives a square.

19 b. To find three numbers such that their sum is a given
number and the cube of their sum plus any one of them gives a

square.

19 c. To find three numbers such that their sum is a given
number and the cube of their sum minus any one of them gives a

square.

The words then in the text after the enunciation of V. 19

evidently belong to this last problem.]
The given sum is 2, the cube of which is 8.

We have to subtract each of the numbers from 8 and

thereby make a square.

Therefore we have to divide 22 into three squares, each

of which is greater than 6
;

after which, by subtracting each of the squares from 8, we
find the required numbers.

But we have already shown [cf. V. n] how to divide 22

into three squares, each of which is greater than 6

and less than 8, Diophantus should have added.

[The above is explained by the fact that, by addition,

three times the cube of the sum minus the sum itself

is the sum of three squares, and three times the

cube of the sum minus the sum = 3.8 2 = 22.]
l

1 Wertheim adds a solution in Diophantus' manner. We have to find what small

fraction of the form :, we have to add to or , and therefore to 66, in order to
x2- 39

make a square. In order that 66 + -j may be a square, we put

66*J + i = square= ( i + 8*)
2

, say,

which gives #= 8 and ^=64.
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20. To divide a given fraction into three parts such that any
one of them minus the cube of their sum gives a square,

Given fraction |.

Therefore each part = ^ -f a square.

Therefore the sum of the three = | = the sum of three

squares + ^.
Hence we have to divide f into three squares, "which is

easy
1
."

21. To find three squares such that their continued product
added to any one of them gives a square.

Let the "
solid content

" = x"-.

We want now three squares, each of which increased by I

gives a square.

They can be got from right-angled triangles
2
by dividing

the square of one of the sides about the right angle

by the square of the other.

Let the squares then be

The continued product = s'iVffio-**
=^ by hypothesis.

Therefore J$$x*
= I

; and, if jf$ were a square, the problem
would be solved.

We have therefore to increase 66 by ^- , and therefore 7^ by
-

, in order to make a

square. And in fact 7$ +7^
=
(^)~.

Next, since 22 = 3*4- 3
2+ 22 , and 65-48=17, while 72-65 = 7, we put

22 = (3
-

7jr)
2+ (3

-
7.r)

s+ (2 + 1 7*)*.

and *!.
387

Therefore the sides of the squares are ^ ,
2

,
--

,

1100401 1100401 1094116
the squares themselves -^ , ^~t -

f
149769 149769 149769

and the required parts of 2 are &1%-,
!Z75 *

149769 149769 H9769

1 As Wertheim observes, J4 = -?- + + , and the required fractions into which
64 64 25 400

i . 250 89 6r- is divided are % , ^ , ? .

4 loco i 600 1600

2 If a, b be the perpendiculars, c the hypotenuse in a right-angled triangle,

a2 <->

^+i=^=asquare.

Diophantus uses the triangles (3, 4, 5), (5, 12, 13), (8, 15, 17).
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As it is not, we must find three right-angled triangles such

that, if b's are their bases, and /'s are their perpen-

diculars, p\p<ipz bJ)J)3 = a square ;

and, if we assume one triangle arbitrarily (3, 4, 5), we

have to make \2plpj)J)z a square, or 3/A//2^2 a square.

"This is easy
1

," and the three triangles are (3, 4, 5),

(9, 40, 41), (8, 15, 17) or similar to them.

1

Diophantus does not give the work here, but only the result. Bachet obtains it

in this way. Suppose it required to find three rational right-angled triangles (h\, p, ^i),

(A2 ,/2i ^2) and
(/63 , /3 , 3) such that /i/2/3/^i^3 is the ratio of a square to a square.

One triangle (A 1 , pl , b-^ being chosen arbitrarily, form two others by putting

and we have

If now A, = 5,^, = 4 , 1
=

3 , the triangles (/&2 ,/2, 2)
and (/53 ,/3 , *s) are

(4 i, 9, 40)
and (34, 1 6, 30) respectively. Dividing the sides of the latter throughout by 2 (which
does not alter the ratio), we have Diophantus' second and third triangles (9, 40, 41) and

(8, 15, 17).

Fermat, in his note on the problem, gives the following general rule for finding two

right-angled triangles the areas of which are in the ratio m : n (;>).
Form

( i) the greater triangle from im + n, m -
, and the lesser from m + in, m - n,

or (2) the greater from im -n, m + n, the lesser from in - m, m + n,

or (3) the greater from 6m, im -
n, the lesser from 4/ + n, ^m -

in,

or (4) the greater from m + \n, im 4, the lesser from 6n, m in.

The alternative (2) gives Diophantus' solution if we put m= $, n=i and substitute

m in for in m.

Fermat continues as follows : We can deduce a method of finding three right-angled

triangles the areas of which are in the ratio of three given numbers, provided that the

sum of two of these numbers is equal to four times the third. Suppose e.g. that m, n, q
are three numbers such that m + q= ^n (m>q). Now form the following triangles :

(
i
)
from t + +n, im +n,

(2) from 6, m in,

(3) from 4 + q, 4
-

iq.

[If A\ , AZ , AS be the areas, we have, as a matter of fact,

A-^m= Azfn = A^\q = - 6m3 + $6m2n+ i^mn2 -
384

3
.]

We can derive, says Fermat, a method offinding three right-angled triangles the areas

of which themselves form a right-angled triangle. For we have only to find a triangle
such that the sum of the base and hypotenuse is four times the perpendicular. This is

easy, and the triangle will be similar to (17, 15, 8) ; the three triangles will then be formed

(1) from 17 + 4.8, 2 . 17-4. 8 or 49, 2,

(2) from 6.8, 17-2.8 or 48, i,

(3) from 4.8+15, 4.8-2. 15 or 47, 2.

[The areas of the three right-angled triangles are in fact 234906, i (0544 and 207270,
and these numbers form the sides of a right-angled triangle.]

Hence also we can derive a method of finding three right-angled triangles the areas

ofwhich are in the ratio of three given squares such that the sum of two of them is equal to
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Starting again, we put for the squares

Equating the product of these to x*, we find x to be

rational \x = ifr,
and the squares are

, ,

4
].

22. To find three squares such that their continued product
minus any one of them gives a square.

Let the solid content be x*, and let the numbers be

obtained from right-angled triangles, being

Therefore the continued product (^

. 25600 m

1221025

If then - were a fourth power, i.e. if ~ - were

a square, the problem would be solved.

We have therefore to find three right-angled triangles

with hypotenuses /tly 7i2 ,
h3 respectively, and with

A> A> A as one f *he perpendiculars in each re-

spectively, such that

h\hJi*P\P*Ps = a square.

Assuming one of the triangles to be (3, 4, 5), so that e.g.

Jt3p3
=

5 . 4 = 20, we must have

S^iA^aA = a square.

This is satisfied if //iA = 5^2A-
With a view to this we have first (cf. the last proposition)

to find two right-angled triangles such that, if x^, y^

are the two perpendiculars in one and x^ y^ the two

perpendiculars in the other, x-^y-^
= ^x^y^. From such

a pair of triangles we can form two more right-

angled triangles such that the product of the

hypotenuse and one perpendicular in one is five times

the product of the hypotenuse and one perpendicular in

the other 1
.

four times the third, and we can also in the same way find three right-angled triangles of

the same area; we can also construct, in an infinite number of ways, two right-angled

triangles the areas of which are in a given ratio, by multiplying one of the terms of the

ratio or the two terms by given squares, etc.

1
Diophantus' procedure is only obscurely indicated in the Greek text. It was

explained by Schulz in his edition (cf. Tannery in Oeuvres de Fermat, I. p. 313, note).
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Since the triangles found satisfying the relation ^1y1
=

are (5, 12, 13) and (3, 4, 5) respectively
1

,
we have in

fact to find two new right-angled triangles from them,

namely the triangles (^i,/i,^)and (A2 , A. ^a) sucn tnat

^A = 30 and h*pz
=

6,

the numbers 30 and 6 being the areas of the two

triangles mentioned.

These triangles are (6|, f, [u^j) and (2^ j
[T7_]) re-

spectively.

Starting again, we take for the numbers

[-
1/ divided by 2\ gives ff ,

and f divided by 6| gives |f$.]

The product =x^ :

therefore, taking the square root, we have

4.24.120

5-25.169

so that ^=||, and the required squares are found.

23. To find three squares such that each minus the product of

the three gives a square.

Having given a rational right-angled triangle (z, x, y), Diophantus knows how to find a

rational right-angled triangle (A, f, b) such that /&/
= -

xy. We have in fact to put

* =!,,^2, whence * = *-^ =l(*Z^W^Y.2 4\ S2 / \ 22 /

Thus, having found two triangles (5, 11, 13) and (3, 4, 5) with areas in the ratio of 5

to i (see next paragraph of text with note thereon), Diophantus takes

^!=^.i3=6i,/i=^^
=
^; and similarly h z

= *

. 5 = 2^, /2 = -^
= ~

.

Cossali (after Bachet) gives a formula for three right-angled triangles such that the

solid content of the three hypotenuses has to the solid content of three perpendiculars

(one in each triangle) the ratio of a square to a square ; his triangles are

(.),\*,/[,-=ipotenusa],

If /=5, ^= 4, /= 3, we can get from this triangle the triangles (13, 5, 12) and

(65, 63, 16), and our equation is
' '

x2
i.

1 These triangles can be obtained by putting ; =
5, n= i in Fermat's fourth formula

(note on last proposition). By that formula the triangles are formed from (9, 6) and

(6, 3) respectively ; and, dividing out by 3, we form the triangles from (3, i) and (2, i)

respectively.
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Let the "solid content" be x*, and let the squares be

formed from right-angled triangles, as before.

If we take the same triangles as those found in the last

problem and put for the three squares

each of these minus the continued product (**) gives a

square.

It remains that their product =x*\
this gives *= f , and the problem is solved.

24. To find three squares such that the product of any two

increased by I gives a square.

Product of first and second + i = a square, and the third

is a square ;
therefore "

solid content
" + each = a

square.

The problem therefore reduces to V. 21 above 1
.

1 De Billy in the Inventum Novum, Part II. paragraph 28 (Oeuvres de Fermai, III.

pp. 373-4), extends this problem, showing how to findfour numbers, three ofwhich (only)

are squares, having the given property, i.e. to solve the equations

.r22.r3
2 + 1 = r2

, -rj
2 .v4 + i = 2

,

First seek three square numbers satisfying the conditions of Diophantus' problem

v. 24, say ( -% , f -7T-
).

the solution of V. i \ given in Sachet's edition. We have then

to find a fourth number (a-, say) such that

VW
(

are all squares.

Substitute y1 + y for x, so as to make the first expression a square. We have

then to solve the double-equation

729
'

729

which can be solved by the ordinary method.

De Billy does not give the solution, but it may be easily supplied thus

The difference = ( -f ^V '_

O - ^ } (y*+ V)
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25. To find three squares such that the product of any two

minus I gives a square.

This reduces, similarly, to V. 22 above.

26. To find three squares such that, if we subtract the product
of any two of them from unity, the result is a square.

This again reduces to an earlier problem, V. 23.

27. Given a number, to find three squares such that the sum of

any two added to the given number makes a square.

Given number 15.

Let one of the required squares be 9 ;

I have then to find two other squares such that each

-f 24 = a square, and their sum + 15
= a square.

To find two squares, each of which + 24 = a square, take

two pairs of numbers which have 24 for their pro-

duct 1
.

Let one pair of factors be 4/ar, 6x, and let the side of one

square be half their difference or - -
3^.X

Let the other pair of factors be $jx, Sx, and let the

side of the other square be half their difference or

Therefore each of the squares + 24 gives a square.

It remains that their sum + 15 =a square;

therefore ( - ^x
J
+ ( - ^x\ + 1 5

= a square,

Equating the square of half the sum of the factors to the larger expression, we have

\ 3 27/ 9 9

whence y= ^
, and v2 + iy= -

-. ~^ .'
11520

' f '* v2

Therefore A-= (y
s +iy)=- , ,- ,

which satisfies the equations. In fact

9 T 74649600'

4 345/ 1 4o
But even here, as the value of Jt which we have found is negative, we ought, strictly

speaking, to deduce a further value by substituting y ^ , ; for x in the equations

and solving again, which would of course lead to very large numbers.

1 The text adds the words " and [let us take] sides about the right angle in a right-

angled triangle." I think these words must be a careless interpolation : they are not

wanted and give no sense; nor do they occur in the corresponding place in the next

problem.
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6i
or - + 2 ^x*

-
9 = a square = 25*', say.

Therefore *" = f ,
and the problem is solved *.

28. Given a number, to find three squares such that the sum of

any two minus the given number makes a square.

Given number 13.

Let one of the squares be 25 ;

I have then to find two other squares such that each

+ 12 = a square, and (sum of both) 13 = a square.
Divide 12 into factors in two ways, and let the factors be

(2*. 4/*) and (4*, 3 /;r).

Take as the sides of the squares half the differences of the

factors, i.e. let the squares be

Each of these + 12 gives a square.

It remains that the sum of the squares 13
= a square,

or -f + 6| -^ 25 = a square = -| , say.

Therefore x = 2, and the problem is solved 2
.

1

Diophantus has found values of f, 17, f satisfying the equations

Fermat shows how to find four numbers (not squares) satisfying the corresponding

conditions, namely that the sum of any two added to a shall give a square. Suppose 0=15.

Take three numbers satisfying the conditions of Diophantus' problem, say 9, ,
-

.

Assume *2 - 1 5 as the first of the four required numbers
;
and let the second be 6jr + 9

(because 9 is one of the square numbers taken and 6 is twice its side) ; for the same

reason let the third number be - x H-- and the fourth or + -
.

5 ioo 15 225

Three of the conditions are now fulfilled since each of the last three numbers added to

the first (x
2 -

15) plus 15 gives a square. The three remaining conditions give the triple-

equation

136, 522 I5= I|6 jr+ /77y = ^
15 5 15 \i5/

tf*;l.j-+&+.^.:a,4(&y*.
15 ioo 225 15 \6J

2 Fermat observes that four numbers (not squares) with the property indicated can

be found by the same procedure as that shown in the note to the preceding problem.

If a is the given number, put .r
2 + a for the first of the four required numbers.
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29. To find three squares such that the sum of their squares is

a square.

Let the squares be ;r
2
, 4, 9 respectively

1
.

Therefore x* + 97 = a square = (x*
-

io)
2

, say ;

whence x* = ^.
If the ratio of 3 to 20 were the ratio of a square to a

square, the problem would be solved
;
but it is not.

Therefore / have to find two squares (/
2
, q

z
, say) and a

number (m, say) such t/iat m- p* q
4 Jias to 2m the

ratio of a square to a square.

Let J? = z*,f = 4. and m = z* + 4.

Therefore w2 -/4 -
q
4 - O2 + 4)

2 - 2* - 1 6 = 8-z
2

.

Hence 8z2

/(22* + 8), or 4^
2

/(-
s

'2 + 4). must be the ratio of a

square to a square.

Put <sr
2 + 4 = (+i)2

, say;

therefore z= \\, and the squares are p*=2\, q*
=

4, while

m = 6\;

or, if we take 4 times each,/
2 =

9, q*= 16, m =
2$.

Starting again, we put for the squares x*, 9, 16;

then the sum of the squares = ;r
4 + 337 = (-** 25)

2
, and

*=V-
The required squares are

, g, 16.

30. [The enunciation of this problem is in the form of an

epigram, the meaning of which is as follows.]

A man buys a certain number of measures (%oe<?) of wine, some

at 8 drachmas, some at 5 drachmas each. He pays for them a

square number of drachmas
;
and if we add 60 to this number, the

result is a square, the side of which is equal to the whole number
of measures. Find how many he bought at each price.

Let x= the whole number of measures
; therefore x* 60

was the price paid, which is a square (xmf, say.

If now 2
, fl, m2

represent three numbers satisfying the conditions of the present

problem of Diophantus, put for the second of the required numbers ik* +/ 2
, for the third

2/JT + /2 , and for the fourth 2//w+/ 2
. These satisfy three conditions, since each of the

last three numbers added to the first (x
2 + a) less the number a gives a square. The

remaining three conditions give a triple-equation.
i "Why," says Fermat, "does not Diophantus seek two fourth powers such that

their sum is a square ? This problem is in fact impossible, as by my method I am in

a position to prove with all rigour." It is probable that Diophantus knew the fact

without being able to prove it generally. That neither the sum nor the difference of

two fourth powers can be a square was proved by Euler (Commentatioms arithmeticae, j.

pp. 24sqq., and Algebra, Part II. c. xm.).
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Now of the price of the five-drachma measures + of

the price of the eight-drachma measures =x\
so that xz

60, the total price, has to be divided into

two parts such that of one + of the other = x.

We cannot have a real solution of this unless

x > i
(x"-

-
60) and < \ (x*

-
60).

Therefore $x < x'2 60 < &r.

(1) Since x z > 5^ + 60,

x'i =t
>x+ a number greater than 60,

whence x is
1 not less than 1 1.

(2) x'*<8x+ 6o

or -r
2 = &r -t- some number less than 60,

whence x is
1 not greater than 12.

Therefore 11 <x< 12.

Now (from above) x (m
2 + 6o)/2w;

therefore 22 / < m* + 60 < 247/2.

Thus (i) 22m = m'2 + (some number less than 60),

and therefore m is
2 not less than 19.

(2) 24# = w2 + (some number greater than 60),

and therefore m is
2
less than 21.

Hence we put w = 20, and

x*-6o = (x- 2o)
2

,

so that*= \\%,x*= 132^, and * a - 60 = 72$.

Thus we have to divide 72^ into two parts such that

of one partptus | of the other = 1 1.

Let the first part be 5*.

Therefore (second part)
= 1 1|

-
.#,

or second part = 92 82
;

therefore 5* + 92 8^ = 72^,

Therefore the number of five-drachma %oe?

eight-drachma

1 For an explanation of these limits see p. 60, ante.

2 See p. 62, ante.
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BOOK VI

1. To find a (rational) right-angled triangle such that the

hypotenuse minus each of the sides gives a cube 1
.

Let the required triangle be formed from x, 3.

Therefore hypotenuse = x- + 9, perpendicular = 6x, base

=**-9.
Thus xz + 9 (x

z
9)= 1 8 should be a cube, but it is not.

Now 1 8 = 2 . 3* ;
therefore we must replace 3 by m, where

2 . m- is a cube
;
and m = 2.

We form, therefore, a right-angled triangle from x, 2,

namely (x* + 4, ^x, x* 4) ;
and one condition is

satisfied.

The other gives x
n-

4^ + 4 = a cube
;

therefore (x 2)
2

is a cube, or x 2 is a cube = 8, say.

Thus x = 10,

and the triangle is (40, 96, 104).

2. To find a right-angled triangle such that the hypotenuse
added to each side gives a cube.

Form a triangle, as before, from two numbers
; and, as

before, one of them must be such that twice its

square is a cube, i.e. must be 2.

We form a triangle from x> 2, namely .a-'
2
+-4, 4^-, 4 ;r

2
;

therefore ^ + 4^ + 4 must be a cube, while x* must

be less than 4, or x < 2.

Thus x + 2 = a cube which must be < 4 and > 2 =
%j-, say.

Therefore x=^-,
and the triangle is (-*$

, $% ,

&7\
,

or, if we multiply by the common denominator, (135,

352, 377)

3. To find a right-angled triangle such that its area added to

a given number makes a square.

Let 5 be the given number, (3^, 4^, $x} the required

triangle.
1

Diophantus' expressions are 6 tv rfj viroreivotiffrj,
" the (number) in (or represent-

ing) the hypotenuse," 6 fv eKar^pg, ruv 6p6uiv, "the (number) in (or representing) each

of the perpendicular sides," 6 iv T inpaSy, "the (number) in (or representing) the area,"

etc. It will be convenient to say "the hypotenuse," etc. simply. It will be observed

that, as between the numbers representing sides and area, all idea of dimension is ignored.
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Therefore 6xz + 5 = a square = 9*', say,
or 3-^=5.
But 3 should have to 5 the ratio of a square to a square.
Therefore we must find a right-angled triangle and a

number such that the difference between the square
of the number and the area of the triangle has to 5 the

ratio of a square to a square, i.e. = \ of a square.

Form a right-angled triangle from
( m, \

;

\ */

thus the area is mz
.

Let the number be ; + , so that we must have

101
4 . 5 H = of a square ;

therefore 4.25+ ^-~- = a square,

or ioow2 + 505 = a square = (lorn + 5)
2
, say,

and m = ^.
The auxiliary triangle must therefore be formed from ^,

/T ,
and the auxiliary number sought is ^.

Put now for the original triangle (fix, px, bx\ where (//, /, b}

is the right-angled triangle formed from ^, ^ ;

this gives \pbx- + 5 = L
l%ffix*;

and we have the solution.

[The perpendicular sides of the right-angled triangle are

5
2

whence

and the triangle is

4. To find a right-angled triangle such that its area minus a

given number makes a square.

Given number 6, triangle ($x, 4*, $x), say.

Therefore 6>2 6 = square = 4-r
2
, say.

Thus, in this case, we must find a right-angled triangle

and a number such that

(area of triangle)
- (number)

2 = of a square.

Form a triangle from /, .m
15*
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Its area is m2
,
and let the number be m . .

m* m
Therefore 6 =

(a square),

or ^6mz 60 = a square = (6m 2)
2
, say.

Therefore m =
f ,

and the auxiliary triangle is formed from

(f , |), the auxiliary number being |~|.

We start again, substituting for 3, 4, 5 in the original

hypothesis the sides of the auxiliary triangle just

found, and putting (ff)
2
.*"

2 in place of ^x-\ and the

solution is obvious.

[The auxiliary triangle is (*$$-, 2, tyffl), whence

0^2 _ 6 = (f|)^
2
,
and x = f ,

so that the required triangle is (-
4
S^, -V

6-
-Wf)-]

5. To find a right-angled triangle such that, if its area be

subtracted from a given number, the remainder is a square.

Given number 10, triangle (3^, 4*, $x), say.

Thus 10 6^2 = a square; and we have to find a right-

angled triangle and a number such that

(area of triangle) + (number)
2 =

T̂ of a square.

Form a triangle from m, ,
the area being m*

; ,m m
and let the number be h 5w.m
Therefore 26m 2 + 10 = ^ bf a square,

or 26cwz2 + 100 = a square,

or again 6$m'* + 25 = a square = (Sm + 5)
2
, say,

whence m = 80.

The rest is obvious.

The required triangle is AOfff^, T^, ^iHHHHM
6. To find a right-angled triangle such that the area added

to one of the perpendiculars makes a given number.

Given number 7, triangle (3^, 4^, 5^).

Therefore 6xz + yc = 7.

In order that this migJit be solved, it ivould be necessary that

(half coefficient of xj- + product of coefficient of x* and
absolute term should be a square ;

but (i^)
2 + 6.7 is not a square.

Hence we must find, to replace (3, 4, 5), a right-angled

triangle such that

(\ one perpendicular)
2 + 7 times area = a square.

Let one perpendicular be w, the other i.
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Therefore ftm + = a square, or ijm + i = a square.)
Also," since the triangle is rational, m* + i = a square.)
The difference m* - i^m = m (m 14) ;

and putting, as usual, 7
2 =

147/2 + i,

we have m = ^-.

The auxiliary triangle is therefore (^, 1,2,?-) or (24, 7, 25).

Starting afresh, we take as the triangle (24^, 7.*-, 25*).
Therefore 84^ + ?x = 7,

and ^ = ^.

We have then
^6, ^

> j)
as the solution 1

.

7. To find a right-angled triangle such that its area minus one
of the perpendiculars is a given number.

Given number 7.

As before, we have to find a right-angled triangle such that

( one perpendicular)
2 + 7 times area= a square ;

this triangle is (7, 24, 25).

Let then the triangle of the problem be (7^, 24^-, 25^).

Therefore 843?
- jx = 7,

*=l,
and the problem is solved 2

.

1 Fermat observes that this problem and the next can be solved by another method.
" Form in this case," he says,

" a triangle from the given number and r, and divide

the sides by the sum of the given number and i
;
the quotients will give the required

triangle."

In fact, if we take as the sides of the required triangle

(a
2 + i) .*, (a

2 - i ) x, iax,

where a is the given number, we have

(a
2

i) ax
2 + iax=a,

one root of which is x= --= - + -5 =
;

,

a i fl* I a+ i

and the sides of the required triangle are therefore

a2 + i a2 - i va

a+i
' a+i ' a+ r

'

The solution is really the same as that of Diophantus.
2

Similarly in this case we may, with Fermat, form the triangle from the given number

and i, and divide the sides by the difference between the given number and i, and we

shall have the required triangle.

In VI. 6, 7, Diophantus has found triangles f, , r) (f being the hypotenuse), such that

(i)

l
-

and (2) \to
Fermat enunciates the third case

(3) *-
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8. To find a right-angled triangle such that the area added to

the sum of the perpendiculars makes a given number.

Given number 6.

Again I have to find a right-angled triangle such that

(^ sum of perpendiculars)
2

-f 6 times area = a square.

Let m, i be the perpendicular sides of this triangle ;

therefore (m + i )
2 + 3m = {m* + ^\m + i = a square,

while m* + i must also be a square.

T-I r
Therefore

2
> are both squares.

The difference is 2m . 7, and we put

whence m = |f ,

and the auxiliary triangle is (ff , i, ff), or (45> 2 ^> 53)-

Assume now for the triangle of the problem

(45*, 28*, 53*).

Therefore 630^ + 73* = 6
;

* is rational [== T
'

H],
and the solution follows.

9. To find a right-angled triangle such that the area minus the

sum of the perpendiculars is a given number.

Given number 6.

As before, we find a subsidiary right-angled triangle such

that (^sum of perpendiculars)-+ 6 ti tries area= a square.

This is found to be (28, 45, 53) as before.

Taking (28*, 45*, 53*) for the required triangle,

630*-'- 73* = 6;

x = ws> an<^ tne problem is solved 1
.

10. To find a right-angled triangle such that the sum of its

area, the hypotenuse, and one of the perpendiculars is a given
number.

observing that Diophantus and Bachet appear not to have known the solution, but that

it can be solved "by our method." He does not actually give the solution ; but we may
compare his solutions of similar problems in the Inventum Novitm, e.g. those given in

the notes to VI. 1 1 and vi. 15 below and in the Supplement. The essence of the method
is that, if the first value of x found in the ordinary course is such as to give a negative
value for one of the sides, we can derive from it a fresh value which will make all the

sides positive.
1 Here likewise, Diophantus having solved the problem

Fermat enunciates, as to be solved by his method, the corresponding proble
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Given number 4.

If we assumed as the triangle (hx.px, bx), we should have

and, in order that the solution may be rational, we must
find a right-angled triangle such that

\ (hyp. + one perp.)
2 + 4 times area = a square.

Form a right-angled triangle from i, m + i.

Then | (hyp. -f.jone perp.)
2 = J- (m* + 2m + 2 + m2 + 2nif
= ;;z

4 + 4m3 + 6mz + 4m+ i
,

and 4 times area = 4 (m + i) (m
2 + 2m)

= 4m3 + 1 2m2 + 8m.

Therefore

m* + 8m3 + i 8m2+ 1 2m + i = a square = (6m + 1
- w2

)
2
, say,

whence ;// = |, and the auxiliary triangle is formed from

(i, f) or (5, 9). This triangle is (56, 90, 106) or

(28, 45, S3)-

We assume therefore 28^,45^, 53^ for the original triangle,

and we have 630^ + 8 \x = 4.

Therefore ^=i^, and the problem is solved.

II. To find a right-angled triangle such that its area minus

the sum of the hypotenuse and one of the perpendiculars is a given

number.

Given number 4.

We have then to find an auxiliary triangle with the same

property as in the last problem ;

therefore (28, 45, 53) will serve the purpose.

We put for the triangle of the problem (28^,45^, 53*), and

we have 63O,r
2 8 \x = 4 ;

x=-^, and the problem is solved 1
.

1

Diophantus has in vi. 10, n shown us how to find a rational right-angled triangle

f> > *? (f being the hypotenuse) such that

(1) Jfr+f+f=.

(2) l&l-(t+t) = a.

Fermat, in the Inventum Novum, Part III. paragraph 33 (Oeuvres de Fermat, in.

p. 389), propounds and solves the corresponding problem

(3) *+-;& =

In the particular case taken by Fermat =
4. He proceeds thus:

First find a rational right-angled triangle in which (since a= 4)

^(f +)['- 4-^
= a square.
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Lemma I to the followingproblem.

To find a right-angled triangle such that the difference of the

perpendiculars is a square, the greater alone is a square, and further

the area added to the lesser perpendicular gives a square.

Let the triangle be formed from two numbers, the greater

perpendicular being twice their product.

Hence I must find two numbers such that (i) twice their

product is a square and (2) twice their product exceeds

the difference of their squares by a square.

This is true of any two numbers the greater of which

= twice the lesser.

Form then the triangle from x, 2.x, and two conditions are

satisfied.

The third gives 6x* + $x*= a square, or 6x- + 3
= a square.

I have therefore to find a number such that 6 times its

square + 3 = a square ;

one such number is i, and there are an infinite number of

others 1
.

If x = i, the triangle is formed from i, 2.

Suppose it formed from x+ i, x; the sides then are

f= IX*+ 1 JC + I , %=2X+1, 1} 2JC^+2Ji.

Thus +)l.
= a square
=

(.r
2 - 2X + i )

2
, say.

-

3

The triangle formed from -
,
- is ( ,,-) Thus we may take as the auxiliary33 \9 9 9/

triangle (17, 15, 8).

Take now ifx, 15.*, 8* for the sides of the triangle originally required to be found.

We have then

f+--)?= 32* -6cur-= 4;

whence x=-, and the required triangle is ( , ,
-

).
3 V 3 3 3/

[The auxiliary right-angled triangle was of course necessary to be found in order to

make the final quadratic give a rational result.]

Bachet adds after vi. u a solution of the problem represented by

to which Fermat adds the enunciation of the corresponding problem

1

Though there are an infinite number of values ofx for which 6.r2 + 3 becomes a square,
the resulting triangles are all similar. For, if x be any one of the values, the triangle is
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Lemma II to the followingproblem.
Given two numbers the sum of which is a square, an infinite

number of squares can be found such that, when the square is multi-

plied by one of the given numbers and the product is added to

the other, the result is a square.

Given numbers 3, 6.

Let x* + 2x + i be the required square which, say, when

multiplied by 3 and then increased by 6, gives a square.

We have 3_r
2 + 6.r + 9 = a square ;

and, since the absolute term is a square, an infinite number

of solutions can be found.

Suppose, e.g. yp + 6x + 9 = (3
-

$x}\

and x = 4.

The side of the required square is 5, and an infinite

number of other solutions can be found.

12. To find a right-angled triangle such that the area added

to either of the perpendiculars gives a square.

Let the triangle be ($x, \2x, 13^).

Therefore ( I ) 30^ + 1 2x a square = 36^, say,

and x = 2.

But (2) we must also have

3Q*
2 + 5-r

= a square.

This is however not a square ivhen x = 2.

Therefore I must find a square ;
2^2

,
to replace 36**, such

that I2/O
2 -

30), the value of x obtained from the

first equation, is real and satisfies the condition

30tr
2 + $x = a square.

This gives, by substitution,

(6om
2 + 25 2o)/(** 6om + 900) = a square,

or 6ow2 + 2520 = a square.

This could be solved [by the preceding Lemma II] if

60+2520 were equal to a square.

Now 60 arises from 5 . 12, i.e. from the product of the

perpendicular sides of (5, 12, 13);

2520 is 30. 12. (12-5), i.e. the continued product of the

area, the greater perpendicular, and the difference

between the perpendiculars.

formed from .*, 2*, and its sides are therefore a*
2

, 4-r
2

, 5-*
2

;
that is, the triangles are all

similar to (3, 4, 5). Fermat shows in his note on the following problem, vi. 12, how to

find any number of triangles satisfying the conditions of this Lemma and not similar to

(3. 4- 5)- See p. 235, note.
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Hence we must find an auxiliary triangle such that

(product of perps.) + (continued product of area,

greater perp. and difference of perps.) = a square.

Or, if we make the greater perpendicular a square and

divide out by it, we must have

(lesser perp.) + (product of area and diff. of perps.)

= a square.

Then, assuming that we have found two numbers, (i) the

product of the area and the difference of the perpen-

diculars and (2) the lesser perpendicular, satisfying

these conditions, we have to find a square (m
2

) such

that the product of this square into the second of

the numbers, when added to the first number, gives

a square
1
.

1 The text of this sentence is unsatisfactory. Bachet altered the reading of the MSS.
So did Tannery, but more by way of filling out. The version above follows Tannery's text,

which is as follows : airdycrai eh ri> Mo &pt6/M>vs tvpbvras [for Suras of MSS. ]
< rbv re vwb>

roO ^9a5oC Kot T?)J i>7repox?s rwv 6p0wv, </ca2 rbv tv Ty tXdffffovt rwv opffuv > ,
avOis [for

avrrjt of MSS.] farfiv QOV riva, 5s jro\Xair\a<na<T0ets eirl i-va rbv dod^vja, < Kai TTpo<T\afiuv

rbvtrtpov>, troiel rerpdywvov.

The argument would then be this. If (A, />, l>)
be the triangle (>/), we have to make

bp + -
bp (i> -p) b a square,

or, if b is a square, / + - bp(b-p) must be a square.

The ultimate equation to be solved (corresponding to 6o/ 2 +252O= a square) is

bpm
z + -bp(b -p) 6 = a. square,

or, if b is a square, pni
1 + -

bp (b -/) = a square ;

and then fore, according to Tannery's text, "the problem is reduced to this: Having found

two numbers -
bp (b -/) and / [satisfying the conditions, namely that their sum is a

square, while b is also a square], to find after that a square such that the product of it

and the latter number added to the former number gives a square."
The difficulty is that, with the above readings, there is nothing to correspond exactly to

the phraseology of the enunciation of Lemma I, which speaks, not of making / + -
bp (b-p)

a square when b is a square, but of making b p, b and/-f -
bp all simultaneously ^quares.

But \\ieparticular solution of the Lemma is really equivalent to making b and/>+ -
bp (b p)

simultaneously squares. For the triangle is formed from a, ia ; this method of ma 1
ing

b a square (
=

4<z
2
) incidentally makes b p a square (

= a2
), and p + -

bp becomes 3<z
2 + 6*,

while p + -
bp (b -p) becomes 3a

2 + 6rt6 . Since the solution actually used is ai, the

effect is the same whichever way the problem is stated. And in any case, whether the

expression to be made a square is 3
>
a l

i
i + 6a^ or 3a?m? + 6a6

, the problem equally reduces,

to that of making yn"
1 + 6 a square.



BOOK VI 235

How to solve theseproblems is shown in the Lemmas.
The auxiliary triangle is (3, 4, 5). [Lemma I.]

Accordingly, putting for the original triangle (3*, 4*-, $x\

we have
6**+ I

b th squares.

Let .* = - be the solution of the first equation :

Ittr O

then x- = m4
\2m--\- 36

The second equation therefore gives

whence i2m* + 24 = a square,
and we have therefore to find a square (m*) such that

twelve times it + 24 is a square; this is possible, since

12 + 24 is a square [Lemma II].

A solution is m* =25,
whence x=

-fa,

and f~. ', ) is the required triangle
1

.

\i9' 19' ip/

13. To find a right-angled triangle such that its area minus

either perpendicular gives a square.

We have to find an auxiliary triangle exactly as in the

last problem ;

Bachet's reading is drdyertu efj ri> 5i/o apiOftwr dofftrrur TOV T( tuftadov, iced rijt

(\dffcrovot TUV irepl rrjv opff-^v, avrols fi/ret* rerpdyuvbi' TIVCL, 5j TO\XairXa<ria<rtftti IT'I

fva. run SoOtvruv, Kai T/xxrXa^Swi' rov erepov, Toifj rfrpdyuvoif.
1 Fermat observes that Diophantus gives only one species of triangle satisfying the

condition, namely triangles similar to (3, 4, 5), but that by his (Fermat's) method an infinite

number of triangles of different species can be found to satisfy the conditions, the first

being derived from Diophantus' triangle, the second from the new triangle, and so on.

Suppose that the triangle (3, 4, 5) has been found satisfying the condition that

where , 77 are the perpendicular sides and >if.

To derive'a second such triangle from the first (3, 4, 5), assume the greater of the two

perpendicular sides to be 4 and the lesser $+*

Then $, + $(_,,) .
I n= 36- i2jr-8.r = a square.

Also f
2= 2 + ij

2
=25 + dr+ Jr

s= a square.

We have therefore simply to solve the double-equation

36-i2jr-8*2= 2 V

25+ 6.r+ *2=^)'
which is a matter of no difficulty. As a matter of fact, the usual method gives

20667 . / 20667 23729i6s\'+3=^S9 - and the mangle is

(593-89-
< -SSr



236 THE ARITHMETICA

this triangle is (3, 4, 5), and accordingly we assume for

the triangle of the problem (3^-, 4*-, $x).

One condition then gives 6r2 4^= a square = m^x2
, say

(*'<6),

and ;i: = ^ -
6 m2

The second condition gives 6x2
3^r= a square ; and, by

substitution,

96 12
> - ^ - - = a square,

m* 1 2m* +36 6 w2

or 24+1 2;/z
2 = a square.

This is satisfied by ;;/ = I,

whence ;r=f ,
and the required triangle is (

, , 4 J
.

Or, if we do not wish to use the value I for m,

\etm = z+i, and (dividing by 4) we have

3w2 + 6 =
3-sr

2 + 6z + 9 = a square ;

^ must be found to be not greater than Jg
3-

(in order that

m* may be less than 6), and /// will not be greater than

%2-. The solution is then rational 1
.

14- To find a right-angled triangle such that its area minus the

hypotenuse or minus one of the perpendiculars gives a square.

Let the triangle be (p:, 4*, $x).

Therefore ,
2

5

\ are both squares.

Making the latter a square (= m^\ we have

x
=6^1tf (^

2
<6).

1
Diophantus having solved the problem of finding a right-angled triangle f, TJ,

(f being the hypotenuse) such that

ire both squares,

Fermat enunciates, as susceptible of solution by his method, but otherwise very difficult,

the corresponding problem of making

both squares.

This problem was solved by Euler {Navi Commentarii Acad. Petropol. 1749, n. (1751),

pp. 49 sqq. Commentationes arithmeticae, I. pp. 62-72).
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The first equation then gives

54 15-

or 1 5;
2

36 = a square.

This equation we cannot solve because \ 5 is not tfie sum of
two squares*. Therefore we must change the assumed

triangle.

Now (with reference to the triangle 3, 4, 5) I5w
2 = the

continued product of a square less than the area, the

hypotenuse, and one perpendicular ;

while 36 = the continued product of the area, the perpen-

dicular, and the difference between the hypotenuse
and the perpendicular.

Therefore we have to find a right-angled triangle (h, p, b,

say) and a square (w
2
) less than 6 such that

m^hp ^pb .p(]i p} is a square.

If we form the triangle from two numbers Xlt X3 and

suppose that p=2.X^X^ and if we then divide

throughout by (Xl X^f which is equal to // -/, we
must find a square ,5

s
[= m-l(X^

- XJf\ such that

z*/ip ^pb .p is a square.

Ttie problem can be solved if X^, X^ are "similar plane
numbers*?

Form the auxiliary triangle from similar plane numbers

accordingly, say 4, i. [The conditions are then

satisfied 3

.]

[The equation for m then becomes

8 . ijm- 4 . 1 5 . 8 . 9 = a square,

or 1 36;
2

4320 = a square.]

Let 4 m* 36. [This satisfies the equation, and 36 < area

of triangle.]

1 See p. 70 above.
4
Diophantus states this without proof. [A

"
plane number "

being of the form a . bt

a plane number similar to it is of the form a. b or -^ ab.]

The fact stated may be verified thus. We have

* (X?+ Xf) vXiXz- XiX2 (X? - AV) 2X1X2= a square.

The condition is satisfied if z*=X\X<i, for the expression then reduces to +X^X.X.
In that case X\X<t is a square, or X^jX^ is a square.
3 Since ^=4, X3= i, we have A = i?,f=S, b= 15, 32=^^=4, and

z*hp-^pb.p=. 17. 8-4. 15. 8 = 2. 32=64, a square.

4 The reason for this assumption is that, by hypothesis, *=w/2
/(.V1

- X)y
, or

4=w2
/3

2
,
and mz=

$6.
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The triangle formed from 4, i being (8, 15, 17), we assume

&tr, \$x, \jx for the original triangle.

We now put 6ox- - &r = 36^,
and x ~\-

The required triangle is therefore (-. c, ?2|U 5 37
Lemma to thefollowingproblem.
Given two numbers, if, when some square is multiplied into

one of the numbers and the other number is subtracted from

the product, the result is a square, another square larger than

the aforesaid square can always be found which has the same

property.

Given numbers 3, 1 1, side of square 5, say, so that

3.25 11- = 64, a square.

Let the required square be (x + 5)
2
.

Therefore

3 (*+ 5)
2 - 1 1 = 3*

2 + 3<^+ 64 = a square
=

(8
-

2x}\ say,

and x=62.
The side of the new square is 67, and the square itself

4489.

15. To find a right-angled triangle such that the area added

to either the hypotenuse or one of the perpendiculars gives a

square.

In order to guide us to a proper assumption for the

required triangle, we have, in this case, to seek a

triangle (//, /, b, say) and a square (m
z

) such that

m* > \pb, the area, and

mthp \pb.p(}i p) is a square.

Let the triangle be formed from 4, i, the square (;
2
)

being 36, as before
;

but, the triangle being (8, 15, 17), the square is not

greater than the area.

We must therefore, as in the preceding Lemma, replace

36 by a greater square.

Now hp = 136, and \pb .p (h p} = 60 . 8 . 9 = 4320,

so that 1 36m 2
4320 = a square,

which is satisfied by m*= 36 ;
and we have to find a larger

square (^
2

) such that

4320 = a square.
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Put s = in + 6, and we have

(m* -f 1 2nt + 36) 1 36 - 4320 = a square,
or 1 36;

2
-f 1 6$2m + 576 = a square = (km 24)*, say.

This equation has any number of solutions
; e.g., putting

k = 1 6, we have

m = 20, z = 26, and 2s = 676.

We therefore put (&r, ir, \yx) for the original triangle,

and then assume

6ot-2 + &r = 676*-
2
,

whence ^ = 7^, and the problem is solved 1
.

1 In vi. 14, 15 Diophantus has shown how to find a rational right-angled triangle

*7i I (where f is the hypotenuse) such that

are both squares,

are both squares.

In the Inventum Afovum, Part I. paragraphs 26, 40 (Oeuvres de Fermat, ill. pp. 341

-2, 349-50) is given Fermat 's solution of a third case in which

are both squares.

This depends on the Lemma : To find a rational right-angled triangle in which

f(f+^)-^i?
= a square.

Form a right-angled triangle from JT+ i, r ; the sides are then

o^+2jr+a, jr*+2jr, 2JT+2.

We must therefore have

(.r
2+ wr+ )(.* + 3jr+ I)-(JT+I) (.i

3
+2-r) = a square,

or **+ 4*
3+ 6j.-

a+ 6^-+ 2 = a square

= (j^+2x+i)
s

, say.

Therefore r= --, and the triangle has one of its sides x- + ijc negative. Instead

therefore of forming the triangle from -, I or from i, 2, we form it from jr-f- 1, a aad

repeat the operation. The sides are then

j^+a-x + s, jt+2jr-3, 4^ + 4,

and we have

(.**+ 2.r+ 5) (jc
2+ 4jr- i)

-
(2JT+ 2) (jr

2 + 2J. - 3)
= a square,

i =a square

=
(i + iar-4r*)*, say,
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1 6. To find a right-angled triangle such that the number

representing the (portion intercepted within the triangle of the)

bisector of an acute angle is rational 1
.

A

C

Suppose the bisector AD =
$x, and one segment of the

base (DB} = 3^- ;
therefore the perpendicular = 4^-.

Let the whole base CB be some multiple of 3, say 3 ;
then

0? = 3-3x
But, since AD bisects the angle CAB,

AC:CD = AB-.BD;
therefore the hypotenuse A C =

f (3 3^) = 4 - 4*.

whence x = ~, and the required auxiliary triangle is formed from ^9 or from 29, 11,

the sides being accordingly 985, 697, 696.

(Fermat observes that the same result is obtained by putting y for x in the

expression x* + ^x
3 + ftx* + 6x + 2 ; for we must have

uare=^+5^-yy, say,

whence y= , so that #=^ =
, and the triangle is formed from, i or from

29, 12, as before.)

We now return to the original problem of solving

We assume for the required triangle (985^, 697^, 696*) and we have -
rj
= 244556^,

so that

985^-242556^)
V must both be squares.

697^-242556^)

Assume that 697^
- 242556^= (697^)*,

and we have x - 348^
2
=^97^2

,

whence x= ,
and the required triangle is ( , , ).

1045' \iQ45 io45
'

io45 ;

[The 985^-242556^ is a square by virtue of the sides 985, 697, 696 satisfying the

conditions of the Lemma; for 985^-242556^=-^;
-

^.
,

9
^'

9
2

-

, which is a square

if 985. 1045 --.697.696 is a square, and 1045 ^697 + -.696.]

1 Why did not Diophantus propound the analogous problem
" To find a right-angled

triangle such that the sides are rational and the bisector of the right angle is also rational"?

Evidently because he knew it to be impossible, as is clear when (a, c being the perpen-

diculars) the bisector is expressed as ^2. (Loria, op. cit. p. 148 .)
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Therefore [by Eucl. I. 47]

16=
and * = .

If we multiply throughout by 32, the perpendicular = 28,

the base = 96, the hypotenuse = 100, and the bisector

=
35-

17. To find a right-angled triangle such that the area added
to the hypotenuse gives a square, while the perimeter is a cube.

Let the area be x and the hypotenuse some square
minus x, say 16 x.

The product of the perpendiculars = 2x
;

therefore, if one of them be 2, the other is x, and the

perimeter = 18, which is not a cube.

Therefore we must find some square which, when 2 is

added to it, becomes a cube 1
.

1 "Did Diophantus know that the equation w2+2 = w3 only admits of one solution

=, ^=3? Probably not" (Loria, op. cit. p. 155). The fact was noted by Fermat

(on the present proposition) and proved by Euler.

Killer's proof (Algebra, Part II. Arts. 188, 193) is, I think, not too long to be given

here. Art. 188 shows how to find x, y such that cuP + cy* may be a cube. Separate

fl-r' + ry
2 into its factors x*Ja+y^]( -c), x<Ja -yJ( -

f), and assume

the product (a/
1+ cq^f being a cube and equal to cuP + ey*.

To find values for x and y, we write out the expansions of the cubes in full, and

-c)- yff Ja + cf J( -
c),

whence a-= a/
3 -

yfty
3
,

For example, suppose it is required to make x*+y* a cube. Here a=i and e=

so that x-p^-^pq^,

y= 3?q-q*,
. If now/=2 and f=i, we find x=* and^= n, whence

Now (Art. 193) let it be required to find, if possible, in integral numbers, other squares

besides 25 which, when added to 2, give cubes.

Since 0^+ 2 has to be made a cube, and 2 is double of a square, let us first determine

the cases in which xljriyL becomes a cube. Here a= i, c 2, so that

.r=/3_6>?2, y=&q*f;
therefore, sincey= i i, we must have

ifq- if or q($p*-iq*)= I 5

consequently q must be a divisor of i.

Let, then, q=i, and we shall have 3/2
- 2 = i.

With the upper sign we have 3/^= 3 and, taking /)=
-

i, we find x~ 5 ; with the lower

sign we get an irrational value of/ which is of no use.

H. D.
l6
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Let the side of the square be m+i, and that of the cube

m i.

Therefore mz - yn1 + yn i = m2 + 2m + 3,

from which m is found 1 to be 4.

Hence the side of the square = 5, and that of the cube = 3.

Assuming now x for the area of the original triangle,

25 x for its hypotenuse, and 2, x for the perpen-

diculars, we find that the perimeter is a cube.

But (hypotenuse)
2 = sum of squares of perpendiculars ;

therefore x* 50*- + 62 5
= x* + 4 ;

x = &g^, and the problem is solved.

1 8. To find a right-angled triangle such that the area added

to the hypotenuse gives a cube, while the perimeter is a square.

Area x, hypotenuse some cube minus x, perpendiculars.*-, 2.

Therefore we have to find a cube which, when 2 is added

to it, becomes a square.

Let the side of the cube be m i.

Therefore m* yiP + yn + i = a square = ( \\m + i )
2

, say.

Thus m = *, and the cube = (Jf)
3 =

js.

Put now x for the area, x, 2 for the perpendiculars, and

-%\- x for the hypotenuse;
and x is found from the equation (-%%- xf = x* + 4.

nd the trianle is 2 1

19. To find a right-angled triangle such that its area added to

one of the perpendiculars gives a square, while the perimeter is

a cube.

Make a right-angled triangle from some indeterminate odd

number*, say 2x+ i
;

then the altitude = 2*+ i, the base = 2x"- + 2.x, and the

hypotenuse = 2x"- + 2x+ i.

It follows that there is no square except 25 which has the required property.

Fermat says ("Relation des nouvelles decouvertes en la science des nombres,"

Oeuvres, II. pp. 433-4) that it was by a special application of his method of descente,

such as that by which he proved that a cube cannot be the sum oftwo cubes, that he proved

(1) that there is only one integral square which when increased by i gives a cube, and

(2) that there are only two squares in integers which, when added to 4, give cubes. The
latter squares are 4, 121 (as proved by Euler, Algebra, Part n. Art. 192).

1 See pp. 66, 67 above.
2 This is the method of formation of right-angled triangles attributed to Pythagoras.

If m is any odd number, the sides of the right-angled triangle formed therefrom are m,

i(w2
-i), i(^2

-ri), for w2+ U(W2- ,)1

2

=
J1(

W2 +
!)j.

2

. Cf. proc iUS) Comment.

on Rucl. i. (ed. Friedlein), p. 428, 7 sqq., etc. etc.
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Since the perimeter = a cube,

and, if we divide all the sides by x + r, we have to make
2 a cube.

Again, the area + one perpendicular = a square

Before + . . square ;

But 4-r + 2 = a cube
;

therefore we must find a cube which is double of a

square ;
this is of course 8.

Therefore 4^+2 = 8, and x=\\.
The required triangle is (-

,
3

,
%\

.

20. To find a right-angled triangle such that the sum of its

area and one perpendicular is a cube, while its perimeter is a

square.

Proceeding as in the last problem, we have to make

$x + 2 a square)

2x+ i a cube
j

"

We have therefore to seek a square which is double of a

cube; this is 16, which is double of 8.

Therefore 4-r+ 2= 16, and x=$\.

The triangle is (-, ^, %) .

\9 '

9
' 9J

21. To find a right-angled triangle such that its perimeter is

a square, while its perimeter added to its area gives a cube.

Form a right-angled triangle from x
t i.

The perpendiculars are then 2x, x* i, and the hypotenuse

Hence 2x- + 2x should be a square,

and x3 + 2x--\-x a cube.

It is easy to make 2x- + 2x a square ;
let 2** + 2x

therefore x=2/(m2
-2).

By the second condition,
o 82

_
1-

_ + _ must be a cube,

20Z4 _ .

16 2
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Therefore 2; 4 = a cube, or 2m a cube =
8, say.

Thus ;;z = 4, ^=T2
4
=

7> x* =
-$-

But one of the perpendiculars of the triangle is x-- I, and

we cannot subtract i from ^.
Therefore we must find another value for x greater than i

;

hence 2 < m2 < 4.

And we have therefore to find a cube such that | of the

square of it is greater than 2, but less than 4.

If z* be this cube,

2<\&< 4,

or 8 < ^ < 16.

This is satisfied by ^ =
-^-, or s3 =

^-.

Therefore *=, ^2 =
||f, and *=fff, the square of

which is > i.

Thus the triangle is known

22. To find a right-angled triangle such that its perimeter is

a cube, while the perimeter added to the area gives a square.

(1) We must first see how, given two numbers, a triangle

may be formed such that its perimeter = one of

the numbers and its area = the other.

Let 12, 7 be the numbers, 12 being the perimeter, 7 the

area.

Therefore the product of the two perpendiculars

= 14 = ^. 14*.

If then -, 14-r are the perpendiculars,

hypotenuse = perimeter sum of perps.
= 12 --- \^x,%

Therefore [by Eucl. I. 47]

~ + I96.r
2 + 172

-^ - 336^=^ + 196* ;

that is, 172 = 336^-+ ,

3C

or 172^=336^ + 24.

This equation gives no rational solution, because 862
24 . 336

is not a square.

Now 172 = (perimeter)
2 + 4 times area,

24. 336= 8 times area multiplied by (perimeter)
2
.

(2) Let now the area = m, and the perimeter = any
number which is both a square and a cube, say 64.
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Therefore
{ (642 + 4w)}

2 - 8 . 64" . m must be a square,

or 4^2 - 24576^ +4194304 = a square.

Therefore m2 6 144772 + 1048576 = a square]
Also m + 64 = a square]

'

To solve this double-equation, multiply the second by
such a number as will make the absolute term the

same as the absolute term in the first.

Then, if we take the difference and the factors as usual,

the equations are solved.

[After the second equation is multiplied by 16384, the

double-equation becomes

m* -6i44m + 1048576 = a square)

16384^ + 1048576 = a square}
'

The difference is m z
22528;;?.

If m, m 22528 are taken as the factors, we find m = 7680,

which is an impossible value for the area of a right-

angled triangle of perimeter 64.

We therefore take as the factors 1 1 m, -fam 2048 ; then,

when the square of half the difference is equated to

the smaller of the two expressions to be made squares,

we have

(&m + 1024)* = 16384;^ + 1048576,

and m =

Returning now to the original problem, we put
-

,
2mx

for the perpendicular sides of the required triangle,

and we have

64 - - -

which leads, when the value of m is substituted, to

the equation

78848* - 8432^ + 225 = o.

The solution of this equation is rational, namely

_52723 = 25 _o_

9856 448 176*

Diophantus would of course use the first value, which

would give (-^f-, ^, *$$) as the required right-

angled triangle. The second value of x clearly gives

the same triangle.]
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23. To find a right-angled triangle such that the square of its

hypotenuse is also the sum of a different square and the side of

that square, while the quotient obtained by dividing the square

of the hypotenuse by one of the perpendiculars of the triangle is

the sum of a cube and the side of the cube.

Let one of the perpendiculars be x, the other x*.

Therefore (hypotenuse)
2 = the sum of a square and its

X* -4- X^
side ; also = x3 +x = the sum of a cube and its

x
side.

It remains that x* +** must be a square.

Therefore x2 + I = a square = (x 2)
2

, say.

Therefore x= f ,
and the triangle is found [f , ^, {].

24. To find a right-angled triangle such that one perpendicular

is a cube, the other is the difference between a cube and its side,

and the hypotenuse is the sum of a cube and its side.

Let the hypotenuse be x*+x, and one perpendicular

Therefore the other perpendicular = 2xz = a cube = Xs
, say.

Thus x= 2, and the triangle is (6, 8, 10).

It is on Bachet's note to vi. 2 2 that Fermat explains his method of solving

triple-equations^ as to which see the Supplement, Section v.

[No. 20 of the problems on right-angled triangles which Bachet

appended to Book vi. (" To find a right-angled triangle such that its area

is equal to a given number ") is the occasion of Fermat's remarkable note

upon the theorem discovered by him to the effect that The area of a right-

angled triangle the sides of which are rational numbers cannot be a square

number.

This note will be given in full, with other information on the same

subject, in the Supplement]



ON POLYGONAL NUMBERS

All numbers from 3 upwards in order are polygonal, containing
as many angles as they have units, e.g. 3, 4, 5, etc.

" As with regard to squares it is obvious that they are such

because they arise from the multiplication of a number into

itself, so it was found that any polygonal multiplied into a

certain number depending on the number of its angles, with

the addition to the product of a certain square also depending
on the number of the angles, turned out to be a square. This

I shall prove, first showing how any assigned polygonal

number may be found from a given side, and the side from

a given polygonal number. I shall begin by proving the pre-

liminary propositions which are required for the purpose."

i. If there are three numbers with a common difference, then

8 times the product of the greatest and middle + the square of the

least = a square, the side of which is the sum of the greatest and

twice the middle number.

Let the numbers be AB, BC, BD in the figure, and we

have to prove SA . C + BD* = (AB + zBC}\

E_A O
p_B

By hypothesis A C= CD, AB= BC + CD, BD= BC- CD.

Now 8A B.BC=4AB.BC+(^BC* + 4BC.CD}.
Therefore ZAB.BC+BD*

. [Eucl. n. 8]

and we have to see how AB* + ^AB . BC+ ^BC* can

be made a square.

[Diophantus does this by producing BA to E, so that

AE = BC, and then proving that

It is indeed obvious that

2. If there are any numbers, as many as we please, in A.P.,

the difference between the greatest and the least is equal to the

common difference multiplied by the number of terms less one.
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[That is, if in an A.P. the first term is a, the common
difference b and the greatest term /, n being the

number of terms, then

l- a = (n- i)&]
Let AB, BC, BD, BE have a common difference.

Now A C, CD, DE are all equal.

Therefore EA = ACx (number of terms AC, CD, DE}
= A C x (number of terms in series I ).

3. If there are as many numbers as we please in A.P., then

(greatest + least) x number of terms = double the sum of the

terms.

[That is, with the usual notation, 2s = n (/+ #).]

(i) Let the numbers be A, B, C, D, E, F, the number of

them being even.

Let GH contain as many units as there are numbers,

and let GH, being even, be bisected at K. Divide

GK into units at L, M.

Since F-D=C-A,

But F + A = (F+A).GL-
therefore C+D = (F+A) .LM.

Similarly E + B = (F + A ) . MK.
Therefore, by addition,

A + B + C + D + E + F= (F + A ) . GK.
Therefore 2 (A++ ...)= 2 (F + A). GK

= (F+A).GH.
(2) Let the number of terms be odd, the terms being

A, B, C, D, E.

F H L K G

Let there be as many units in FG as there are terms,

so that there is an odd number of units.

Let FH be one of them
;
bisect HG at K, and divide HK

into units, at L.
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Since E-C=C-A,
E + A = 2C=2C.LK.

Similarly B + D=2C.LH.
Therefore A +E + B + D = 2C. HK

= C. HG.
Also C=C.HF-
therefore, by addition,

A+J3+C+ D + E=C.FG;
and, since 2C= A + E,

249

4. If there are as many numbers as we please beginning with

i and increasing by a common difference, then the sum of all

x 8 times the common difference + the square of (common
difference 2)

= a square, the side of which diminished by 2

= the common difference multiplied by a number which when
increased by i is double of the number of terms.

[The A. p. being i, i + b, ... i +(n -
\)b, and s the sum,

we have to prove that

s . &b + (b
- 2f = {b (2n

-
i) + 2J

2
,

i.e. 8bs = 4#V/
2 - 4 (b - 2) nb,

or 2s = bnz
(b 2)n

= n {2 + ( i)b\.

The proof being cumbrous, I shall add the generalised

algebraic equivalent in a column parallel to the

text.]

Let AB, CD, EF be the terms in I i +&, i + 26, i + 36,....

A. P. after i.

P A

K N

Let GH contain as many units

as there are terms including r.

Difference between EF and i

=
(diff. between AB and i) x (GH- i).

[Prop. 2]
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Put AK, EL, GM each equal
to unity.

Therefore LF=KB.MH.
Make KN=2, and we have to

inquire whether

(sum of terms) x 8KB f NB-
=

{2 + KB(GH+HM)}\
Now sum of terms

.GH [Prop. 3]

= \ (KB . MH, GH + 2677),

since LF= KB.MH [above].

Bisecting MH at O, we have

(sum of terms)
= KB.GH.HO+GH.

We have therefore to inquire

whether

(KB . GH. HO + GH} . 8KB + NB-
is a square.

Now KB. GH. HO. 8KB
.HO. KB*

Is then

4GH. HM . KB* + 8KB . GH + NB*
a square ?

Now 8GH.KB
= 4GM. KB + 4 (GH+HM) KB.
Also 4GM. KB = 2NK . KB

;

and, adding NB*, the right-hand side

becomes KB* + KN*. [Eucl. II. 7]

Is then ^GH.HM.KB*
+ 4 (GH + HM} KB + KB* + KN*

a square ?

Again, KB* + ^GH . HM . KB*
= GM*.KB* + ^GH.HM . KB*
= (GH+HM)* . KB*. [Eucl. n. 8]

Is then (GH+HM}* . KB*
+ 4(Gtf+HM) KB + KN*

a square?
Make the number NO' equal to

(GH+HM).KB-

Call the expression on

the left-hand side X.

X=bn.
H

=
( + -

i}*b*

+ 4 {
+ (
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thus (GH
will be proved later 1

.

Also ANO' = 2 . NO1

. NK, since

Therefore

X =
{( + n - i ) b + 2]

2

Is then NO* + NK* + 2NO' . NK
a square ?

Yes
;

it is the square on KO.
And

aK - 2 = NO' = KB(GH + HM\
while GH+HM+ i = (twice number
of terms).

Thus the proposition is proved.

" The above being premised, I say that,

[5] If there be as many terms as we please in A.P. beginning
from i, the sum of the terms is polygonal; for it has as many
angles as the common difference increased by 2 contains units, and

its side is the number of the terms set out including i."

The numbers being as set out in the figure of Prop. 4, we

have, by that proposition,

(sum of terms) . %KB + NB* = Ka\
Taking another unit AP, we have KP' = 2, while KN'= 2;

therefore PB, BK, BN are in A.P., so that

ZPB.BK + NB* = (PB + 2KB}* ; [Prop, i
]

while 3 + i = 2 . 2, or 3 is one less than the double of 2.

Now, since the sum of the terms of the progression

1
Deferred lemma.

To prove that (Gff+ffM)2
. K&

= {(GH+HM). KB}*.

Place DE (equal to a) and EF (equal to
)

in a

straight line.

Describe squares Dff, EL on DE, EF and com-

plete the figure.

Then DE:EF=Dff:HF,
and HE:EK=HF:EL.

Therefore ffFis a mean proportional between the two squares,

that is DH.FK=HF\
or a./S=(a/3).
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including unity satisfies the same formula 1

[literally
" does the same problem "] as PB does,

while PB is any number and is also always a polygonal,

the first after unity (for AP is a unit and AB is the

term next after it), and has 2 for its side,

it follows that the sum of all the terms of the progression

is a polygonal with the same number of angles as PB,
the number of its angles being the same as the

number of units in the number which is greater by 2,

or PK, than the common difference KB, and that its

side is GH which is equal to the number of terms

including I.

And thus is demonstrated what is stated by Hypsicles in

his definition, namely, that,

"If there are as many numbers as we please beginning
from I and increasing by the same common difference,

then, when the common difference is I, the sum of all

the terms is a triangular number
;
when 2, a square ;

when 3, a pentagonal number [and so on]. And the

number of the angles is called after the number

exceeding the common difference by 2, and the side

after the number of terms including I."

[In other words, if there be an arithmetical progression

i
,

i + b, i + 2b, . . . i + (n i ) b,

the sum of the n terms, or \n {2 + ( i) b} t
is the

wth polygonal number which has {b + 2) angles.]

Hence, since we have triangles when the common dif-

ference is i, the sides of the triangles will be the

greatest term in each case, and the product of the

greatest term and the greatest term increased by i

is double the triangle.

- l Nesselmann (pp. 475-6), exhibits this result thus.

Take the A.P. i, i+, i + il>,... i+(n-i)l>.

If s is the sum, 8sl> + (/>
-

a)
2= [b (in

-
i) + i}

z
.

If now we take the three terms b- 2, b, 6 + 1, also in A. P.,

U(b + l) + (b-lY={(l> + l) + lb}
Z

=
(3* +2)2.

Now 6+1 is the sum of the first two terms of the first series, and corresponds there-

fore to s when n = 2 ; and 3 2 . 2 - i , so that 3 corresponds to in- i.

Hence s and b + 2 are subject to the same law ;
and therefore, as b + 1 is a polygonal

number with b + 1 angles, s is also a polygonal number (the wth) with b + 1 angles.
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And, since PB is a polygonal with as many angles as

there are units in it,

and 8P . (PB - 2) + (PB - 4)*
= a square (from above,

BK being equal to PB -
2, and NB to PB -

4),

the definition of polygonal numbers will be as follows :

Every polygonal multiplied by 8 times (number of angles

2) + square of (number of angles 4) = a square
1
.

The Hypsiclean definition and the new one being thus

simultaneously proved, it remains to show how, when
the side is given, the prescribed polygonal is found.

For, having given the side GH and the number of angles,

we know KB.
Therefore (GH+ HM} KB, which is equal to NO', is also

given ;
therefore KO'(=NO'+NK or NO'+ 2) is given.

Therefore KO' Z is given ;

and, subtracting from it the given square on NB, we

obtain the remaining term which is equal to the

required polygonal multiplied by "&KB. Thus the

required polygonal can be found.

Similarly, given the polygonal number, we can find its

side GH. Q. E.D.

Rules for practical use.

(i) To find the numberfrom the side.

Take the side, double it, subtract i, and multiply the

remainder by (number of angles 2). Add 2 to the

product ;
and from the square of the sum subtract

the square of (number of angles
-

4). Dividing the

remainder by 8 times (number of angles
-

2), we

have the required number.

1 Hultsch points out (art. Diophantos in Pauly-Wissowa's Real-Encyclopadie der

dassischen Altertumswissenschafteri) that this formula

8P (a
-

-i
) + (a

-
4)

2= a square

shows that Diophantus intended it to be applied not only to cases where a is greater than

4 but also where = 4 or less. For 36, as Diophantus must have known, besides being

the second 36-gon, is also a triangle, a square, and a ij-gon, inasmuch as

)

2= 289= i?
2

,

-4)
2= 576=242,

And indeed it is evident from Def. 9 of the Arithmetica that (3-4)
2= '. while it is

equally obvious that (4-4)2= 0.
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[If P be the wth -gonal number,

P . 8 (a
-

2) + (a
-

4)
2 =

{2 + (2
- I ) (

-
2)j

(2) Tofind the sidefrom the number.

Multiply the number by 8 times (number of angles 2) ;

add to the product the square of(number of angles -4).

We thus get a square. Subtract 2 from the side of

this square and divide the remainder by (number of

angles
-

2). Add I to the quotient, and half the

result gives the side required
1
.

= i rilP

L 2V a-2
\ I

J'\

Given a number, to find in how many ways it can be polygonal.

Let AB be the given number, BC [Algebraical equivalent.]

the number of angles, and in BC take Number AB = P.

Number of angles BC=a.

Since the polygonal AB has BC
angles,

(i) SAB.BD + BE*=

say.

Cut offAH equal to i
;

therefore SAB.BD
= X\ say.

But SP(a-2)

Make DK equal to 4(AB+Btf\
and for $AH . BD put 2BD . DE.

1 Fermat has the following note.
" A very beautiful and wonderful proposition which

I have discovered shall be set down here without proof. If, in the series of natural

numbers beginning with i , any number n be multiplied into the next following, n + i ,

the product is twice the nth triangular number; if n be multiplied into the (n+i)(h

triangular number, the product is three times the nth tetrahedral number ; if n be

multiplied into the (+ \}th tetrahedral number, the product isfour times the nth triangulo-

triangular number {figured number of $th order} ; and so on, ad infinitum. I do not

think there can be, in the theory of numbers, any theorem more beautiful or more

general. The margin is too small, and I am not at liberty, to give the proof." (Cf.

Letter to Roberval of 4 November 1636, Oeuvres de Fermat, n. pp. 84, 85.) For a proof,

see Wertheim's Diophantus, pp. 318-20.
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Therefore

(2) FG Z=KD.DB+2BD.DE + BE\

= KD.DB + BD* + DE\
[Eucl. II. 7]

= KB.BD+DE*. [Eucl. n. i]

But, since

(3)

(4)

and DC= half 4 or 2
;

therefore CK > CD.

Therefore, if DK be bisected at

L, L falls between C and K.

And, since Z^" is bisected at Z,

KB .BD + LD* = LB*,

whence KB . BD = LB* - LD\
Therefore, by (4) above,

(5) F
or F
(6) or LD*-DE* = LB*-FG\

Again, since ED = DC, and

is produced to
,

therefore EL .LC= DL? - DC 2

= DL*-DE*
(7) =LB*-FG\

Put FM=BL (for BL>FG,
since FG* + DL Z = BL* + ED\
while >

2 > ^Z^ 2
).

Therefore ^J/ 2 -FG* = EL.L C.

Now, Z?^ being bisected at Z and

being equal to 4 (^4B + BH\

And DC=2AH.
Therefore

or

But

therefore AB = \EL,
while BH=CL.

Therefore AB.BH=
or

LC,
EL .LC=i6AB.BH.

+ 2 (
-

2) . 2 + (rt
-

DL=2(2P-l)

-{2(2P-l)}
2 +22

{2(2P-l))
2 -2 2

CL=2(2P-\}-2]

{2(2P- l)+

FM=2(2P-

EL =



256 ON POLYGONAL NUMBERS

(8) Therefore

16AB . BH = MF~ - FG*

Therefore GM is even.

Let GM be bisected at N . .

\6P(P-

\_={2(2P-2)-2(H-l}(a-2}Y
+ 2 {2 +(2n- i)(-2)}

[Here the fragment ends, and the question of course arises whether

Diophantus ever actually solved the problem of finding in how many
different ways a given number can be a polygonal. Tannery went so far

as to call the whole of the fragment, from and including the enunciation

of the problem, the "vain attempt of a commentator" to solve it
1

.

Wertheim 2 has however shown grounds for thinking that Diophantus did

solve the problem and that the fragment is a genuine part of his argument

leading to that result. The equation

8P(a -
2) + (a

- 4 )

2 =
{2 + (zn

-
i) (a

- 2 )}
2

easily reduces (by algebra) to

8P(a -
2) = 4 (a

-
2) {2 +

(
-

i) (a
-

2)},

or 2P-- n (2 + (n- i) (a
-

2)}.

Wertheim has shown how this result can be obtained by a continuation

of the work, from the point where the fragment leaves off, in the same

geometrical form which is used up to that point
3
,
and how, when the

1
Dioph. i. pp. 476-7, notes.

2
Zeitschriftfiir Math. u. Physik, hist. litt. Abtheilung, 1897, pp. 121-6.

3 The only thing, so far as I can see, tending to raise doubt as to the correctness of

this restoration is the fact that, supposing it to be required to prove geometrically, from

the geometrical equivalent of

that iP=n {2 + (- i) (a-i}\,

it can be done much more easily than it is in Diophantus' proposition as extended by
Wertheim.

For let FG=2 + (in- \)(a-i). Cut off FR equal to 2, and produce RFtv S so that

2n(o-2)

T

We have now 8P . SX=FG 2 - SF 2

Bisect SG at T, and divide out by 4 ;

therefore iP'. S =ST2 -ST. SF
=Sr(ST-SF)
=ST.FT

Now ST=n .SR, and FJ?= i, while RT=(n- i). SK= (n- \)(a-i).

It follows that iP=n{i + (n-i) (a -2)}.
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formula is thus obtained, it can be used for the purpose of finding the

number of ways in which P can be a polygonal number. The portion of

the geometrical argument which has to be supplied is, it is true, somewhat

long, and its length and difficulty may, as Wertheim suggests, account for

the copyist having failed, as it were, to see his way through it and having

stopped through discouragement when he had lost his bearings.

I shall now reproduce Wertheim's suggested restoration of the rest of

the problem. The figure requires some extension, and I accordingly give

a new one after Wertheim.

A H

B-

S R Q N

The last step in the above fragment is

(9) 2FG . GM + GM2 = i6AB.BH.

Bisect GM in JV,

so that GW= NM.

Therefore, if we divide by 4,

(10) FG. GN+ GN* = 4AB. BH,

Put now FR=2AB, and RS=GN,
so that GS = RN, and we have

FS=FR-RS = 2AB - RS,

FN= FR + RN= 2AB + Ri\,

GN=RS=2AB-FS.
Substituting in (n), we have

(12) (2AB+ RN}(2AB-FS)=$AB.BH,

{
2

(
2P- 2)-2(n-i)(a-2)}

GN=NM

{2P+n(a- 2)}

(
2 (/>-!)-(-,) ( -a)}

FS=2P
-{ 2 (P-i}-(n-i}(a-2)\

= 2 +(n- t)(a-2)
FA7

=2P+n(a-2), from above

GN=2(P-i)-(n-i}(a-2)
RN= AV- 2AB = n (a

-
2)

\2P+n(a-2)}

'7
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(13) 4AB?-2AB(FS-RN)

Therefore

(14) 2AB(FS-RN} 2P{2-(a-2)}
+ (0-2) {(-i)(a -2) + 2}

2P(a-2}

Now RN= FN-FR = FM-NM - FR = FM-\ GM- FR
= BL-\ GM- 2AB = BD + \DK- 1 GM
= BD + 2AB + zBH- \ GM - 2AB

and FS=FR-RS

Therefore RN- 2BH- zAB

and RN- FS + 2AH = BD.

Again, we have

RN= BD + 2BH- \ GM= BD + 2BH-
= BD+ 2BH- \BD -%DL + \FG
= \BD + 2BH-\DL + \FG
= \BD + 2BH- (AB + BH) + %FG
= \BD + BH- AB + ^FG
= \BD-AH+\FG
=
| (BD + FG- 2AH}.

But, from the rule just preceding this proposition,

therefore BD + FG = 2n . BD + 2,

or BD + FG - 2AH= 211 . BD
;

therefore RN= n . BD.

Accordingly the equation (15) above becomes

(16)

or

(17)

= n.BD.FS, 2P(a- 2
}

= n(a-2){(n-i)(a-2)

2P=n{(n- i)(a-2) +

Thus the double of any polygonal number must be divisible by its

side, and the quotient is the number arrived at by adding 2 to the product

of (side
-

i) and (number of angles
-

2).

For a triangular number the quotient is n + i, and is therefore greater
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than the side
; and, as the quotient increases by n - i for every increase

of i in the number of angles (a), it is always greater than the side.

We can therefore use the above formula (17) to find the number of

ways in which a given number P can be a polygonal number. Separate *P
into two factors in all possible ways, excluding i . zP. Take the smaller

factor as the side (). Then take the other factor, subtract 2 from it,

and divide the remainder by (n
-

i). If (n
-

i) divides it without a

remainder, the particular factors taken answer the purpose, and the quotient

increased by 2 gives the number of angles (a). If the second factor

diminished by 2 is not divisible by (n-i) without a remainder, the

particular division into factors is useless for the purpose. The number of

ways in which P can be a polygonal is the number of pairs of factors

which answer the purpose. There is always one pair of factors which will

serve, namely 2 and P itself.

The process of finding pairs of factors is shortened by the following

considerations.

2P=n\(n- i)(a- 2) + 2};

therefore zPjn = 4 + an - a - 2n,

2(P-n)and a = 2 + / :

n(n-i)

therefore not only 2 Pin but also 1 must be a whole number and,
n(n-i}

as a is not less than 3,

2(P-n)
n(n-i)

> or i,

and consequently

Thus in choosing values for the factor n we need not go beyond that

shown in the right-hand expression.

Example i. In what ways is 325 a polygonal number?

Here - i + V(i + &P) = - i + V(a6oi) = 50. Therefore n cannot be

greater than 25. Now 2 . 325 = 2 . 5 . 5 . 13, and the only possible values

for n are therefore 2, 5, 10, 13, 25. The corresponding values for a are

shown in the following table.

Example 2. P= 120.

172



CONSPECTUS OF THE ARITHMETICA

Equations of the first degree with one unknown.

i. 8. x + a = m (x + b).

i. 9. a-x = m(b~x).
i. 10. x + b = m (a x).

i. ii. x + b = m (x a).

i. 39. (a + x) b + (b + x) a = 2 (a + b} x, \

or (a + b) x + (b + x) a = 2 (a + x} b, \ (a> b}.

or (a + b} x + (a + x) b = z (b + x) a, )

Determinate systems of equations of the first degree.

i. i. x+y =
a, x-y = b.

{i.

2. x +y = a, x = my.

i. 4. x-y =
a, x = my.

i. 3. x+y a, x=my + b.

{i i ,

i. 5- x+y = a. x + -y = 0.m n

i. 6. x+y =
a, x y = b.

li. 1 2. x1 + x.2 = y-L +y2
= a, xl

= my^ yl nx2 , (x1
> x$, y1 >jy2).

i. 15. x + a = m (y a), y + b = n (x b).

(i. 16. y + z = a, z + x = t>, x+y = c.

1

1. 18. y + z- x= a,

J L 19. y + z + 7v x = a, z + w + x y =
b, w + x +y z c,

i x +y + z w d.

i. 20. x+y + z a, x + y = mz, y + z = nx.

i. 2 1. x =y -\ z . y = z + -
x, z = a + - y, (x >y > z).***>*' aa ' A^ \ ^ /

/I \ / I \ /I
ii. 18*. x

{
x + a] + (

- z + f] = y { -y + b\ + [
x + a

\m ) \p )
'

\n
j

) \

' "

'-y + t>),

x +y -i z = a.

Determinate systems of equations reducible to the first degree

i. 29. x+y a, x2

y^ = b.

*
Probably spurious.
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i. 3 ! x = niy> x* +y* n (
x +y)-

1.32. x = my, x2

+y
2 = n (x-y).

i. 33. x = my, x*-f = n(x +y).

I. 34. x = my, x*-y
2 = n (x -y).

i. 34. Cor. i. x = my, xy = n(x+y).
Cor. 2. x = my, xy=n(x -y).

( i. 35. x = my, y*=nx.
1 I. 36. x = my, j

2 =
ny.

1.37. x=my,y* = n(x+y).
i. 38. x = my, y* = n(x -y).

1.38. Cor. x = my, x2

=ny.
x = my, x* = nx.

x-my, x* = n(x+y).
x = my, xr = n(x y)-

n. 6*. x-y =
a, x?-y* =xy + t>.

iv. 36. yz = m (y + z), zx = n(z + x), xy =p (x +-j).

Determinate systems reducible to equations of second degree.

1
1. 27. x+y = a, xy = b.

1 1. 3 . x -y =
a, xy = b.

i. 28. x+y =
<

Jiv.
i. xs +y3 =

\ iv. 2. x3 -y3 =
a, x-y = b.

iv. 15. (y + z)x = a, (z + x)y = b, (x+y)z-c.
( iv. 34. yz + (y + z)

= a2 - i
,
zx + (z + x) b* \

, xy + (x +y) = c2
i .

iv. 37. yz = m(x+y +
z), zx = n(x+y + z), xy=p(x+y+z).

Lemma to v. 8. yz a2
,
zx = IP, xy c*.

Systems of equations apparently indeterminate but really reduced, by

arbitrary assumptions, to determinate equations of the first degree,

i. 14. xy-m (x +y) [value ofy arbitrarily assumed].

I n. i*. (cf. I. 31.) x2 +y2 = m(x+y)
- n. 2*. (cf. i. 34.) x2 -y2 =m(x-y)

j-

[x assumed -
2y\.

n. 4*- (cf.
i. 32-) x*+y*=m(x-y)

* n. 5*. (cf. i. 33.) x9-f = m (x +y)

11.7*. xt

y
z -m(x-y) + a [Diophantus assumes x -y =

2].

i 22. x--x +-z=y--y + -x = z-^-z + -y [value ofy assumed].m p nj m p /<

= z--z+-y =w--w + -z [value of v assumed].
p n* q p L

*
Probably spurious.
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1.24. x+ -

i. 25. x + - (y + z + w) -y + -(z+w + x)

[value ofy + z assumed].

= z + - (w + x +y) = zv + -(x+y + z)

[value ofy + z + w assumed].

11.17*. (cf. i. 22.) x-( x + a
) + ( -z + c ]

\m ) \p )

[ratio of x to y assumed].

IV. 33.
l l

Diophantus assumes
l

-y = i .

Indeterminate equations of the first degree.

Lemma to iv. 34. xy + (x +y) =
a^ [Solutions iv dopurru.

iv. 35. xy - (x +y) = a\ y practically found in

iv. 36. xy = m (x +y) } terms of x.]

Indeterminate analysis of the second degree.
n. 8.

II. 9.

n. 10. x~ y
2 = a.

n. ii. x + a = u*, x + b = v*.

n. 12. a-x-u^, b-x = v*.

n. 13. x-a = u2
,
x-b = v*.

11.14 = 111.21. x+y a, x+ zz u2
, y + z2 = v2

,

II. 15
= 111. 20. x+y =

a, z
2 -x = u2

, z*-y = v*.

n. 1 6. x = my, a2 + x = u2
,
a2

+y = v*.

11.19. x2
-y

2 = m (y
2 - z

2

).

ii. 20. x2 +y = u2
, y* + x = Z'

2
.

n. 21. x2 -y =
u*, y

2 -x = v2
.

n. 22. x2 + (x +y) = 2
, y

2 + (x +y) = v~.

n. 23. x* (x+y) = u2
, y

2 -
(x +y) = if:

ii. 24. (x +y)
2 + x = u2

, (x +y)
2

+y = v2
.

II. 25. (x+y)
2-x=u2

, (x+y)
2

-y = v>.

II. 26. xy + x = u2
, xy+y = v2

,
u + v = a.

ii. 27. xy-x = u2
, xy-y = v*, u + v = a.

II. 28. X2

y
2 + x2 = u2

,
X2

y
2
+y2 = v>.

n. 29. x2

y
2 -x2 = u2

,
x2

y
2 -y2 = tf.

n. 30. xy + (x +y) = u2
, xy

-
(x +y) = v*.

*
Probably spurious.
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II. 31. xy + (x +y) = w2
, xy~ (x +y) = v>, x+y = wl

.

II. 32. y2 + z = 2
,

z- + x = v*
t
x^ +y = it?.

" 33- /-z^"2
,
z--x =

v>, x?-y = w*.

ill.

34. x* + (x + y + z) = u\ y + (x +y + z)
=

tf, z* + (x +y + z)
= w'.

II. 35. x2 -
(x +y + z)

= u\ y -
(x +y + z)

=
tf, z* -(x+y + z)

= w>.

in. i* (x+y + z)-x
t = u2

, (x+y + z)-y* = v*, (x+y + z) -z* = w*.

I

in. 2*. (x +y + zf + x = a2
, (x +y + zf +y = i?, (x +y + z)

2 + z = -uf.

in. 3*. (x +y + zf -x = u\ (x +y + zf -y =
v*, (x +y + z)

2 - z = W*.

in. 4* x - (x +y + zf = a2
, y - (x +y + zf = v*, z- (x +y + z)

1 = w*.

in. 5. x+y + z=f*, y + z x-u2
,
z +xy = vt

, x+y-z^w*.
in. 6. x +y + z = ?, y + z = w2

,
z + x -

in. 7. xy =y-z, y + z- if, z + x =

fin. 8. x +y + z + a = /
3
, y + z+ =

*,

(in. 9. x +y + z -a = P, y+z a = u3
,

z + x-a =
v*, x+y-a=w'1

.

fin. 10. yz + a =

tin. ii. yz a =

fin. 12. yz + x = u

tin. 13. yz-x =
u*, zxy =

tf, xy-z-vf.
in. 14. yz + x

2 -
u\ zx +y* = z?

t xy + z3 - to*.

fm. 15. yz + (y + z)
=

u*, zx + (z-t-x)
=

v*, xy+(x+y) = w*.

tin. 16. yz-(y + z)
=

u*, zx-(z + x)
= vt

, xy-(x+y)=itr
i
.

fill. 17. xy + (x +y) = if*,

tin. 18. xy
-
(x +y) = w2

,

in. 1 9.

(Xi + xz + x3 + x4)*
x2
=

,

(x1 + Xs + x3 + xty x3
=

,

(^! + x2 + x3 + x4)* x4
=

4.

5-

nv.

tiv.

iv. 13. Jf + i = f, y + i = *, a; H-j' + i = z/
2
,
^ y + i = w*.

iv. i4 . ^+y+s2
=(^-jF

3
) + (/- z2

)
+ (^-2

2
) (^>

nv. 16. x+_y + z = /
2
>
a^ +^ = a2

, j>* + z = i?
t
&+ x = ur.

tiv. 17. ^+^ + = ^, xa -y = ts
i

, y-z^tr
8

,

2 -o; = ^.
17.

iv. 19. ^0 + i = w2
,
z* + i = p2

, ^y + i = a/
2
.

iv. 20. #2*3 + i = r2
, #3*1 + i = s

2
,
xl

x.2 +i=ft

,

xtxt + i - u*, xsx4 + i=v*, xsx4 + i = Z0
2
.

iv. 21. a:z=y, j:-j =
2
,
^-z = z^, y-z = ur (x>y>z).

{iv.

22. ^yz + ^^M2
, xyz+y-z^, xyz + z = w*.

iv. 23. j
-* =

*, xyz-y = zt, xyz-z = ur.

*
Probably spurious,
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IV. 29-

iv. 3- x2

+y
2 + z2 + w2

(x +y + z + w) = a.

iv. 31. x+y=i, (x + d)(y + b}
= u2

.

iv. 32. x +y + z = a, xy + z-u2
, xy-z = tf.

iv. 39. x y = m (y
-

z), y + z = u2
,

z + x^v2
, x+y = zv

2
.

iv. 40. x2

-y
2 = m (y

-
z), y + z = u2

,
z + x=zr>, x+y = uf

v. 2. xz =y
2
,
x + a = u2

, y + a = v*, z + a = zv
2
.

yz + a tf
1

,
zx + a v2

, xy + a = w2
.

v. 4. x - a = r"-, y - a = s
2
,

z - a - f
2

.

yz a = u2
,
zx a = s

, xy a = itr.

V. 6. X - 2 = r2
, y - 2 = S

2
,

Z - 2 = f
2
,

_yz _y
- z u2

,
zx z x=zP, xy xy =

yz-x = u'
2
,
zx y = v'

2
, xy-z = w'2

.

Lemma i to v. 7. xy + x2
+y* - u2

.

v. 7. x2

(x+y + z)= { J , / (x +y + z)
=

\ *\ ,

,, ,V
v. 8. yz(x +y + z)

= l ,2 \ ,
zx (x +y + z)

=

v. 9. (cf. II. ii.) x+y-i t

v. 1 1 . x +y + 2=1, x + a = u2
, y + a^v2

,
z + a = w2

.

v. 10. x+y= i, # + a = #2
, y + b = vi

.

v. 12. # +_y + z = i, x + a = u2
, y + b-v1

^
z + c=w2

.

v. 1 3. x +y + z = a, y + z = u2
,

z + x = v2
,
x +y = zv

2
.

v. 14. x+y + z + w =
a,

x+y + z = s
2
,y + z + w = t

2
,
z + w + x-u2

,

v. 21. X2

y
2z2 + x2 = u2

,
x2fz2

+y
2 = v*t

x2

y
2z2 + z2 = w2

.

v. 22. X2y2
z
2-x2 = u2

,
X2
y

2 z2 -y
2
^zr', x2y2 z2- z2 = u?.

v. 23. x2 - x2fz2 = u\ y2 - x2y2 z
2 =

z?, z
2 - X2

y2 z2 = w2
.

v. 24. y2z2 + i = u\ z2x2 +i=v*, x2
}'

2 + i = or8
,

v. 25. y
2
z2-i=u2

,
z2x2

-i=v>, ^y- i=a<.

v. 26. i-y
2z2 = u2

,
i-z2x2 = vi

,
i-x2

y
2 = ur>.

v. 27. y2 + z2 + a = u

v. 28. y2 + z2 -a = u

v. 30. mx + ny=u2
,

Lemma 2 to vi. 12. ax2 + fr = u'
2

(where a + ^ = ^).

Lemma to vi. 1
5, ax2

-t> = u2

(where ad2 - b = r is known)
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[m. 15]. xy + x+y = u2
, x+i=(y+i).

- = -~
z[in. 16]. xy

-
(x +y) = u\ x-i=~z (y- i).

1

2

/

[iv. 32]. *+i = -i(*-i).

[v. 2
1].

x2 + i = u2
, y

2 + i = v*, z2 + i = w2
.

Indeterminate analysis of the third degree,

iv. 3. xz

y = u, xy = u3
.

(iv. 6. *3

I iv. 7. x3

iv. 8. x +y
s = u3

, x+y = u

iv. 9. x +y
3 = u, x+y = u3

iv. 10. x3
+y

3 x+y

j

iv. ii. -> = *
--y^ the same m

UV. 12. 3?+y =}r + X)

Really reducible to second

degree.

iv. 1 8.

iv. 24. x+y =
a, xy = tf u.

iv. 25. x+y + z = a, xyz = {(x-y) + (x-z) + (y-z)}
3

(x>y>z).

(iv. 26.

tiv. 27.

iv. 28.

iv. 38. (x+y + z)x=-%u(u+ i),

v. 15. (x +y + z)
3 + x = u3

, (x+y + sf+y^v
3
, (x +y 4- z)

3
-f z =

v. 16. (x+y + z)
3 -x = u3

, (x+y + zy-y = i?, (x +y + z)
3 - z =

v. 17. x-(x+y + z)
3 =

u*, y-(x+y + z)
3 =

v>, z-(x+y + z)
3 =

v. 18. x+y + z = t
2
, (x+y + z)

3 + x = u2
, (x+y + z)

3
+y = v>,

(x +y + z)

v. 19. x+y + z = t\ (x+y + z)
3 -x = u2

, (x +y + z)
3 -y = v>,

v.iga. x+y + z = f2
, x-(x+y + z)

3 = u\ y - (x +y + z)
3 =

v*,

v.igb. x+y + z = a, (x +y + z)
3 + x =

(x +y + z)
3

z = a, (x +y + z)
3 - x = u\

v. 20. x +y + z = -
,
x - (x +y + z)

3 = u2
, y - (x + y + z)

3 =
tf,

[iv. 8]. x-y=i,

[iv. 9, 10]. x?+
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[v. 15]. x3 +/ + z3 -
3 = u\

[v.
1 6]. 3

-
(x

3 +y + z3

)
= u2

.

[v. 1 7]. x3 +y + z3 + 3 = u2
.

Indeterminate analysis of the fourth degree.

v. 29. x4
+y* + z4 = u2

.

[v. 1 8]. x2
+y

2 + z2 3 = u4
.

Problems of constructing right-angled triangles with sides in rational

numbers and satisfying various other conditions.

[N.B. I shall use x, y for the perpendicular sides and z for the

hypotenuse in all cases, so that the condition x2

+y
2 = z2 must be under-

stood to apply in every case in addition to the other conditions specified.]

Lemma to v. 7. xy x1y1
= xaya .

fvi. i. z x = u3
, zy = v*.

Ivi. 2. z + x = tt
3
, z+y i^.

j

vi. 3. \xy + a = u2
.

JVI. 4. %xy-a = u2
.

IVI. 5. a-^xy = u2
.

fvi. 6. %xy + x = a.

tvi. 7. \xy-x-a.
fvi. 8. \xy + (x +y) - a.

tvi. 9. \xy-(x+y) = a.

fvi. 10. %xy + (x + z)
= a.

tvi. ii. \xy
-
(x + z)

= a.

Lemma i to vi. 12. x = u2
, x-y = v2

, *xy + y = w2
.

(VI.
12.

tvi. 13.

fvi. 14.

tvi. 15.

vi. 1 6. + i)
=

fvi. 17. \xy + z

tvi. 1 8. \xy-\-z

(vi.
1 9. \xy + x = u2

,
x +y + z = v*.

(vi. 20. ^xy + x = j^, x+y + z v2
.

(vi.
21. x +y + 2 = u2

, \xy + (x +y + z)
- v3

,

tvi. 22. x+y + z = u3
, \xy + (x +y + z)

= v2
.

vi. 23. z2 = u2 + u, z
2

/x =

vi. 24, z = u3 + u, x-n3

[vi. 6, 7]. (\x}
2 + ^mxy =

[vi. 8, 9].

[vi. 10, n], {| (z + x)}
2 + \rnxy = u2

.

[vi. 12]. y + (x-y).%xy = u\ x = v2

(x>y).

[vi. 14, 15]. u2zx - %xy . x (z
-
x)

= ir
(

2 <or>



SUPPLEMENT

ADDITIONAL NOTES, THEOREMS AND PROBLEMS BY FERMAT,
TO WHICH ARE ADDED SOME SOLUTIONS BY EULER

I HAVE generally referred to the notes of Ferrnat, and allied propositions
of his, on the particular problems of Diophantus which were the occasion

of such notes, illustrations or extensions
;
but there are some cases where

the notes would have been of disproportionate length to give in the places
where they occur. Again, some further explanations and additional

theorems and problems given by Fermat are not in the notes to Diophantus
but elsewhere, namely in his correspondence or in the Doctrinae Analyticae
Inventum Novum of Jacques de Billy

" based on various letters sent to

him from time to time by Pierre de Fermat
" and originally included at the

beginning of the 2nd (1670) edition of Bachet's Diophantus (the Inrentum

Novum is also published, in a free French translation by Tannery, in

Oeurres de Fermat, Vol. in. pp. 323-398). Some of these theorems and

problems are not so closely connected with particular problems in Dio-

phantus as to suggest that they should be given as notes in one place

rather than another. In these circumstances it seemed best to collect the

additional matter at the end of the book by way of Supplement.
In the chapter on the Porisms and other assumptions in Diophantus

(pp. 106-110 above) I quoted some famous propositions of Fermat on the

subject of numbers which are the sums of two, three or four square numbers

respectively. The first section of this Supplement shall be devoted to

completing, so far as possible, the story of Fermat's connexion with these

theorems.

SECTION I.

ON NUMBERS SEPARABLE INTO INTEGRAL SQUARES.

As already noted, Fermat enunciated, on Diophantus iv. 29, a very

general theorem of which one part states that Every number is either a

square or the sum of /wo, three or four squares. We shall return to this

later, and shall begin with the case of numbers which are the sum of

two squares.
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i. On numbers which are the sum of two squares.

I may repeat the beginning of the note on in. 19 already quoted (p. 106).
" A prime number of the form 4^+1 is the hypotenuse of a right-angled

triangle in one way only, its square is so in two ways, its cube in three, its

biquadrate in four ways, and so on ad infinitum.
" The same prime number 472+1 and its square are the sum of two

squares in one way only, its cube and its biquadrate in two ways, its fifth

and sixth powers in three ways, and so on ad infinitum.
" If a prime number which is the sum of two squares be multiplied into

another prime number which is also the sum of two squares, the product

will be the sum of two squares in two ways ;
if the first prime be multiplied

into the square of the second prime, the product will be the sum of two

squares in three ways ;
if the first prime be multiplied into the cube of the

second, the product will be the sum of two squares in four ways, and so on

ad infinitum."

Before proceeding further with this remarkable note, it is natural to

ask how Fermat could possibly have proved the general proposition that

(a) Every prime number of the form 4^+1 is the sum of two square

numbers, which was actually proved by Euler
1

. Fortunately we have

in this case a clear statement by Fermat himself of the line which his

argument took. In his
" Relation des nouvelles decouvertes en la science

des nombres" sent by Fermat to Carcavi and shortly after (14 August,

1659) communicated by the latter to Huygens, Fermat begins by a refer-

ence to his method of proof by indefinite diminution (descente infinie or

indefinie) and proceeds
2 thus: "I was a long time before I was able to

apply my method to affirmative questions because the way and manner

of getting at them is much more difficult than that which I employ with

negative theorems. So much so that, when I had to prove that every

prime number of the form 4^+1 is made up of two squares, I found myself

in a pretty fix. But at last a certain reflection many times repeated gave
me the necessary light, and affirmative questions yielded to my method,

with the aid of some new principles by which sheer necessity compelled me
to supplement it. This development of my argument in the case of these

affirmative questions takes the following line : if a prime number of the

form 4 + i selected at random is not made up of two squares, there will

exist another prime number of the same sort but less than the given

number, and again a third still smaller and so on, descending ad infinitum,

until you arrive at the number 5 which is the smallest of all numbers of

1 Novi Commentarii Academiae Petropolitanae 1752 and 1753, Vol. iv. (1758),

pp. 3-40, 1754 and 1755, Vol. v. (1760), pp. $-cfi=Coimentationes arithmetics

colledae, 1849, I. pp. 155-173 and pp. 210-233.
2 Oeuvres de Fermat, n. p. 432.
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the kind in question and which the argument would require not to be made
up of two squares, although, in fact, it is so made up. From which we
are obliged to infer, by reductio ad absurdum, that all numbers of the kind
in question are in consequence made up of two squares."

The rest of the note to Diophantus in. 19 is as follows.
" From this consideration it is easy to deduce a solution of the problem
" To find in how many ways a given number can be the hypotenuse of

a right-angled triangle.

"Take all the primes of the form 4^ + i, e.g. 5, 13, 17, which measure
the given number.

"If powers of these primes measure the given number, set out the

exponents of the powers ; e.g. let the given number be measured by the

cube of 5, the square of 13, and by 17 itself but no other power of 17;
and set out the exponents in order, as 3, 2, i.

" Take now the product of the first of these and twice the second, and
add to the product the sum of the first and second : this gives 1 7. Multiply
this by twice the third exponent and add to the product the sum of 17 and

the third exponent : this gives 52, which is the number of the different right-

angled triangles which have the given number for hypotenuse. [If a, b, c be

the exponents, the number of the triangles is ^abc + 2 (be + ca + ab] + a + b +
c.]

We proceed similarly whatever the number of divisors and exponents.
" Other prime factors which are not of the form 4 + i, and their

powers, do not increase or diminish the number of the right-angled triangles

which have the given hypotenuse.

" PROBLEM i. To find a number which is a hypotenuse in any assigned

number of ways.

"Let the given number of times be 7. We double 7 : this gives 14.

Add i, which makes 15. Then seek all the prime numbers which measure

it, i.e. 3 and 5. Next subtract i from each and bisect the remainders.

This gives i and 2. [In explanation of the process it is only necessary to

observe that, for example, 2 \\abc + 2 (bc + ca + ab) + a + b + c]
+ i is equal

to (2a + i)(2 + i)(2c+ i), and so on.] Now choose as many prime

numbers of the form 4^ + i as there are numbers in the result just arrived

at, i.e. in this case two. Give to these primes the exponents i, 2 re-

spectively and multiply the results, i.e. take one of the primes and multiply

it into the square of the other.

"
It is clear from this that it is easy to find the smallest number which

is the hypotenuse of a right-angled triangle in a given number of ways."

[Fermat illustrates the above further in a letter of 25 December 1640

to Mersenne 1

.

To find a number which is the hypotenuse of 367 different right-angled

triangles and no more.

1 Oenvres de Fermat, II. pp. 214 sq.
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Double the number and add i
;

this gives 735. Take all the divisors

which are prime numbers : these are 3, 5, 7, 7. Subtract i from each and

then divide by 2
;

this gives i, 2, 3, 3. We have then to take four prime

numbers of the form 4/2 + i and give them i, 2, 3, 3 respectively as ex-

ponents. The product of these powers is the number required.

To find the least such number, we must take the four least primes of the

form 4 + i, i.e. 5, 13, 17, 29, and we must give the smallest of them,

in order, the largest exponent ;
i.e. we must take 5

3
, i3

3
, if and 29 in this

case, and the product of these four numbers is the least number which is

the hypotenuse of 367 right-angled triangles and no more.

If the double of the given number + i is a prime number, then there is

only one possible divisor. Suppose the given number is 20; the double

of \\.plus i is 41. Subtracting unity and bisecting, we have 20, so that the

number to be taken is some prime number of the form 4 + i to the power
of 20.]

" PROBLEM 2. To find a number which shall be the sum of two squares

in any assigned number of ways.
" Let the given number be 10. Its double is 20, which, when separated

into its prime factors, is 2.2.5. Subtract i from each, leaving i, i, 4.

Take three different prime numbers of the form 4^+1, say 5, 13, 17, and

multiply the biquadrate of one (the exponent being 4) by the product
of the other two. The result is the required number.

"By means of this it is easy to rind the smallest number which is the

sum of two squares in a given number of ways.
" In order to solve the converse problem,
" To find in how many ways a given number is the sum of two squares,

"let the given number be 325. The prime factors of the form 4 + i

contained in this number are 5, 13, the latter being so contained once only,

the former to the second power. Set out the exponents 2, i. Multiply
them and add to the product the sum of the two : this gives 5. Add i,

making 6, and take the half of this, namely 3. This is the number of ways
in which 325 is the sum of two squares.

"If there were three exponents, as 2, 2, i, we should proceed thus.

Take the product of the first two and add it to their sum : this gives 8.

Multiply 8 into the third and add the product to the sum of 8 and the

third: this gives 17. Add i, making 18, and take half of this or 9. This

is the number of ways in which the number taken in this second case is

the sum of two squares. [If a, b, c be the three exponents, the number
of ways is \ {abc + (be + ca + ab] + (a + b + c) + i

} provided that the number

represented by this expression is an integer.]

"If the last number which has to be bisected should be odd, we
must subtract i and take half the remainder.
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" But suppose we are next given the following problem to solve :

"To find a whole number which, when a given number is added to it,

becomes a square, and which is the hypotenuse of any assigned number of

right-angled triangles.
" This is difficult. Suppose e.g. that a number has to be found which

is a hypotenuse in two ways and which, when 2 is added to it, becomes
a square.

" The required number will be 2023, and there are an infinite number
of others with the same property, as 3362 etc."

2. On numbers which cannot be the sum of two squares.

In his note on Diophantus v. 9 Fermat took up a remark of Bachet's

to the effect that he believes it to be impossible to divide 21 into two

squares because "
it is neither a square nor by its nature made up of two

squares." Fermat's note was: "The number 21 cannot be divided into

two squares (even) in fractions. That I can easily prove. And generally

a number divisible by 3 which is not also divisible by 9 cannot be divided

into two squares either integral or fractional"

He discusses the matter more generally in a letter of August 1640

to Roberval
1

.

"I have made a discovery a propos of the i2th [gth] proposition of

the fifth Book of Diophantus (that on which I have supplied what Bachet

confesses that he did not know and at the same time restored the corrupted

text, a story too long to develop here). I need only enunciate to you my
theorem, while reminding you that I proved some time ago that

"A number of the form qn i is neither a square nor the sum of two

squares, either in integers or fractions."

[This proposition was sent by Mersenne to Descartes, on 22 March

1638, as having been proved by Fermat]
" For the time I rested there, although there are many numbers of the

form 4 + i which are not squares or the sums of squares either, e.g. 21,

33 77> etc-> a fact which made Bachet say on the proposed division of 21

into two squares 'It is, I believe, impossible since 21 is neither a square

nor by its nature made up of two squares,' where the word rear (I think)

clearly shows that he was not aware of the proof of the impossibility.

This 1 have at last discovered and comprehended in the following general

proposition.
"
If a gi^n number is divided by the greatest square which measures it,

and the quotient is measured by a prime number of the form 4*1-1, the given

number is neither a square nor the sum of two squares either integral or

fractional.

1 Oftevres de Fermat, II. pp. 203-4.
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" EXAMPLE. Let the given number be 84. The greatest square which

measures it is 4, and the quotient is 21 which is measured by 3 or by

7, both 3 and 7 being of the form 4^-1. I say that 84 is neither a square

nor the sum of two squares either integral or fractional.

"Let the given number be 77. The greatest square which measures it

is i, and the quotient is 77 which is here the same as the given number

and is measured by u or by 7, each of these numbers being of the form

4# i. I say that 77 is neither a square nor the sum of two squares,

either in integers or fractions.

"
I confess to you frankly that I have found nothing in the theory of

numbers which has pleased me so much as the proof of this proposition,

and I shall be glad if you will try to discover it, if only for the purpose
of showing me whether I think more of my discovery than it deserves.

"
Following on this I have proved the following proposition, which

is of assistance in the finding of prime numbers.
11

If a number is the sum of two squares prime to one another, I say

that it cannot be divided by any prime mtmber of the form ^n i.

"For example, add i, if you will, to an even square, say the square

10 ooo ooo ooo, making 10000000001. I say that 10000000001 cannot

be divided by any prime number of the form 4// i, and accordingly,

when you would try whether it is a prime number, you need not divide by

3, 7, ii etc."

(The theorem that Numbers which are the sum of two squares prime to

one another have no divisors except such as are likewise the sum of two squares

was proved by Euler
1

.)

3. Numbers (i) which are always, (2) which can never be, the sum

of three squares.

(i) The number which is double of any prime number of the form
8- i is the sum of three squares (Letter to Kenelm Digby of June i658)

2
.

E.g. the numbers 7, 23, 31, 47 etc. are primes of the form 8n i
;
the

doubles are 14, 46, 62, 94 etc. ; and the latter numbers are the sums of

three squares.

Fermat adds "
I assert that this proposition is true, though I do so in

the manner of Conon, an Archimedes not having yet arisen to assert it

or prove it."

Lagrange
3 remarks that he has not yet been able to prove the pro-

position completely. The form 8 i reduces to one or other of the three

1 Novi Commentarii Acad. Petropol. 1752 and 1753, Vol. IV. (1758), pp. 3-40=
Commentationes arithmeticae, I. pp. 155-173.

2 Oeuvres de Fermat, II. pp. 402 sqq.
3 "Recherches d'Arithmetique" in Berlin Mtmoires 1773 and 1 775 = Oeuvres de

Lagrange, III. p. 795.
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forms 24n - i, 24/2 + 7, 24;* + 15, of which the first two only are primes.
Lagrange had previously proved that every prime number of the form

24 + 7 is of the form x2 + 6y>. The double of this is 2x2 + 1 2/, and

that is, 2x* + i2/
2
is the sum of three squares.

The theorem was thus proved for prime numbers of the form Bn - i,

wherever n is not a multiple of 3, but not for prime numbers of the form

2472 i.

Legendre
1
, however, has the theorem that Every number which is the

double of an odd number is the sum of three squares.

(2) No number of the form 24/2+ 7 or \
m
(z^n + 7) can be the sum

of three squares.

This theorem is substantially stated in Fermat's note on Dioph. v. n.
We may, as a matter of fact, substitute for the forms which he gives the

forms 8/2 + 7 and 4'" (8n + 7) respectively.

Legendre
2

proved that numbers of the form Sn + 7 are the only odd
numbers which are not the sum of three squares.

4. Every number is either a square or the sum of two, three or

four squares.

This theorem is also mentioned in the " Relation des nouvelles de-

couvertes en la science des nombres "
already quoted, as a case to which

Fermat ultimately found himself able to apply the method of proof by
descente. He says

3 that there are some other problems which require new

principles in order to enable the method of descente to be applied, and the

discovery of such new principles is sometimes so difficult that they cannot

be arrived at except after very great trouble.
" Such is the following question which Bachet on Diophantus admits

that he could never prove, and as to which Descartes in one of his letters

makes the same statement, going so far as to admit that he regards it as

so difficult that he does not see any means of solving it.

"Every number is a square or the sum of two, three or four squares.
"

I have at last brought this under my method, and I prove that, if

a given number were not of this nature, there would exist a number smaller

than it which would not be so either, and again a third number smaller

than the second, etc. ad infinitum ;
whence we infer that all numbers are

of the nature indicated."

In another place (letter to Pascal of 25 September, i654)
4
,
after quoting

the more general proposition, including the above, that every number is

1

Legendre, Zahlentheorie, tr. Maser, I. p. 387.
2 Ibid. p. 386.
3 Oeuvres de Fermat, n. p. 433.
4 Ibid. p. 313.

H. n. 18
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made up (i) of one, two, or three triangles, (2) of one, two, three or four

squares, (3) of one, two, three, four or five pentagons, and so on adinfinitum,

Fermat adds that " to arrive at this it is necessary

1
i
)

To prove that every prime number of the form 4^+1 is the sum

of two squares, e.g. 5, 13, 17, 29, 37, etc.
;

(2) Given a prime number of the form 4^+1, as 53, to find, by a

general rule, the two squares of which it is the sum.

(3) Every prime number of the form 3^+1 is of the form x2 + 3jr,

e.g. 7, 13, 19, 31, 37, etc.

(4) Every prime number of the form 8n + i or 8>n + 3 ts of the form

x*+2y
2
, e.g. n, 17, 19, 41, 43. etc-

(5) There is no rational right-angled triangle in whole numbers the

area of which is a square.

"This will lead to the discovery of many propositions which Bachet

admits to have been unknown to him and which are wanting in Diophantus.
"

I am persuaded that, when you have become acquainted with my
method of proof in this kind of proposition, you will think it beautiful, and

it will enable you to make many new discoveries, for it is necessary, as you

know, that multi pertranseant ut augeatur scientia [Bacon]."

Propositions (3) and (4) will be mentioned again, and a full account

will be given in Section in. of this Supplement of Fermat's method, or

methods, of proving (5).

The main theorem now in question that every integral number is the

sum of four or fewer squares was attacked by Euler in the paper
1

(1754

1755) in which he finally proved the proposition (i) above about primes

of the form 4/2 + i
; but, though he obtained important results, he did not

then succeed in completing the proof. Lagrange followed up Euler's

results and finally established the proposition in i77o
2

. Euler returned

to the subject in 1772 ;
he found Lagrange's proof long and difficult, and

set himself to simplify it
3

.

(The rest of the more general theorem of Fermat quoted above, the

portion of it, that is, which relates to numbers as the sum of n or fewer

n-gonal numbers, was proved by Cauchy
4
.)

1 Novi Commentarii Acad. Petropol. for 1754-5, Vol. V. (1760), pp. 3-58= Cow-
mentatioiies arithmeticae collcctae, 1849, * PP- 2IO~2 33-

2 Nouveanx Memoires de VAcad. Koy. des Sciences de Berlin, annee 1770, Berlin 1772,

pp. 123-133= Oeuvres de Lagrange, in. pp. 187-201: cf. Wertheim's account in his

Diophantus, pp. 324-330.
3 " Novae demonstrationes circa resolutionem numerorum in quadrata," Acta Erudit.

Lips. 1773, p. 193; Acta Petrop. I. II. 1775, p. 48; Comment, arithm. I. pp. 538-548.
4
Cauchy, "Demonstration du theoreme general dc Fermat sur les nombres polygones,"

Oeuvres, ii
e
Serie, Vol. vi. pp. 320-353. See also Legendre, Zahletitheorie, tr. Maser,

n. pp. 332-343-
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Under this heading may be added the further proposition that
"
Any number whatever of the form 8 - i can only be represented as the

sum offour squares^ not only in integers (as others may have seen) but .in

fractions also, as I promise that I will prove
1
."

5. On numbers of the forms x?+2y*, x* + 3^, y* + 5^* respectively.

(i) Every prime number of the form 8 + i or Sn + 3 is of the form
X*+2f.

This is one of the theorems enunciated in the letter of 25 Sept., 1654,
to Pascal 2 and also in the letter of June, 1658, to Kenelm Digby

3
.

[In a paper of 1754 Euler says that he does not yet see his way to

prove either part of the theorem 4
. In 1759 he says

5 he can prove the

truth of the theorem for a prime number of the form Sn + i, but not for

a prime of the form Bn + 3. Later, however, he proved it for prime
numbers of both forms

6
. Lagrange

7 also proved it for primes of the form

(2) Every prime number of the form $n + i is of the form x? + 3^.
The theorem is stated in the same two letters to Pascal and Digby

respectively.

Lagrange naturally quotes it as "All prime numbers of the form 6+ i

are of the form x* + 3^," for of course yi + i is not a prime number unless

n is even.

The proposition was proved by Euler 8
. Lagrange proved

9
(a) that all

prime numbers of the form i2# 5 are of the form x* + 3^, (b) that all

prime numbers of the form \zn i are of the form 3^ }?, and (c) that

all prime numbers of the form i2+ i are of both the forms ^ + 3^ and

**-3/.

(3) No number of the form 3^-1 can be of the form c? + 3^*.

In the "Relation des nouvelles de'couvertes en la science des nombres 10 "

Fermat says that this was one of the negative propositions which he proved

by his method of descente,

1 Letter to Mersenne of Sept. or Oct. 1636, Oeuvres de Fermat, II. p. 66.

2 Oeuvres de Fermat, II. p. 313.
3 Ibid. II. p. 403.
4 "

Specimen de usu observationum in mathesi pura (De numeris formae 2aa + bb)" in

Novi Commentarii Acad. Petrop. 1756-7, Vol. VI. (1761), pp. 185-230^Comment.

arithm. I. pp. 174-192.
5 Nmi Commentarii Acad. Petrop. 1760-1, Vol. vill. (1763). PP- "6-8= Comment.

arithm. I. p. 296.
6 Commentationes arithmetics, II. p. 607.
7 " Recherches d'Arithmetique

"
in Ofuvres de Lagrange, III. pp. 776, 784.

8 "
Supplementum quorundam theorematum arithmeticorum, quae in nonnullis de-

monstrationibus supponuntur (De numeris formae aa + $bb)" in Novi Commetit. Acad.

P^trop. 1760-1, Vol. VIII. (1763), pp. 105-1 28 = Comment. arithm. I. pp. 287-296.
9

Op. fit., Oeuvres de Lagrange, III. pp. 784, 791.
10 Oeuvres de Fermat, n. p. 431.

18 2
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(4) If two prime numbers ending in either 3 or 7 which are also of the

form 4 + 3 are multiplied together, the product is of theform x2 + $y
2

.

This theorem also is enunciated in the letter of June, 1658, to Kenelm

Digby. Fermat instances 3, 7, 23, 43, 47, 67 etc. as numbers of the kind

indicated. Take, he says, two of these, e.g. 7 and 23. The product 161

will be the sum of a square and 5 times another square, namely 81 + 5.16.

He admits, however, that he has not yet proved the theorem generally :

"
I assert that this theorem is true generally, and I am only waiting for

a proof of it. Moreover the square of each of the said numbers is the sum of

a square and 5 times another square : this, too, I should like to see proved."

Lagrange proved this theorem also 1
. He observes that the numbers

described are either of the form 20/2 + 3 or of the form 20/2+7, and he

proves that all prime numbers of these forms are necessarily of the form

2x? 2xy + 3_y
2

. He has then only to prove that the product of two

numbers of the latter form is of the form x2 + $y
2

.

This is easy, for

= (2xx + xy +yx' + $yy')
2 + 5 (xy' -yx')

2
.

6. Numbers of the forms x2 -
2y

2 and 2x2 -y
2

.

Fermat's way of expressing the fact that a number is of one of these

forms is to say that it is the sum of, or the difference between, the two smaller

sides, i.e. the perpendicular sides, of a right-angled triangle. Like Diophantus,
he " forms "

a rational right-angled triangle from two numbers x, y, taking

as the three sides the numbers x2 + y
2
,
x2 -y2

, 2xy respectively. The sum
therefore of the perpendicular sides is x2 + 2xy -y2 or (x +y)

2 -
2y

2
,
and

their difference is either x2 -
2xy -y

2 or zxy
-
(x

2 -y2

),
that is, either

(x-y)
2 - 2y

2 or 2y
2

-(x-y}
2
.

The main theorem on the subject of numbers of these forms is, as

a matter of fact, contained, not in a letter of Fermat's, but in two letters

of Frenicle to Fermat dated 2nd August and 6th Sept., 1641, respectively
2
.

It is, however, clear (cf. the letter in which Fermat had on isth June, 1641,

propounded to Frenicle a problem on such numbers) that the theorem was

at any rate common property between the two.

Frenicle's two statements of the theorem are as follows :

"
Every prime number of the form 8n i is the sum of the two smaller

sides of a (right-angled) triangle, and every number which is the sum of the

two smaller sides of a (right-angled) triangle with sides prime to one another

is of the form 8/2 i."

"Every prime number of the form 8n i, or which is the product
of such prime numbers exclusively, is the difference between the two

smaller sides of an infinite number of primitive right-angled triangles."

1

Op. dt., Oeuvres de Lagrange, II. pp. 784, 788-9.
2 Oeuvres de Fermat, \\. pp. 231, 235.
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Lagrange
1

quotes the theorem in the form

All prime numbers of the form 8n i are of the form y2 - 2/ 2
.

Lagrange himself proves
2 that all prime numbers of the form Sn - i are

of both the forms x2 -
2y

2 and 2x2

-y2
,
and observes 3

that this theorem is more

general than that of Fermat so far as prime numbers of the form Sn - i are

concerned. This, however, seems scarcely correct if the further explanations

given by Frenicle are taken into account. For Frenicle shows clearly,
in the second of the two letters referred to 4

, that he was fully alive to

the fact that numbers which are of the form x2 -
zy

2
are also of the form

2X2 -y2
;
and indeed it is obvious that he was aware that

x2

-2y*=2 (x +yf -(x+ 2y)
2

.

Lagrange proved in addition 5 that

Every prime number of the form 8 + i is at the same time of the three

forms x2 + 2y
2

,
x2 -

2y
2
,
2X2 -y2

.

This is, I think, really included in Frenicle's statements when combined

with Fermat's theorem (i) above to the effect that every prime number
of the form Sn + i is of the form x2 + 2y

2
.

The problem propounded by Fermat to Frenicle in connexion with the

numbers now under consideration was:

Given a number, to find in how many ways it can be the sum of the two

smaller sides of a right-angled triangle.

Frenicle replied that this involved also the problem of finding a number

which will be the sum of the two smaller sides of a right-angled triangle in

an assigned number of ways and no more, and tried, but unsuccessfully
6

,

to bring these problems under a rule corresponding to that by which

Fermat found the number of ways in which a prime number of the form

4/z+ i can be the hypotenuse of a right-angled triangle (see p. 269 above),

but with a prime number of the form Sn i substituted for the prime

number of the form 4^+1. I cannot find that Fermat ever communicated

his own solution, at all events in the correspondence which we possess.

SECTION II.

EQUATION X2 - Ay2 - I.

History of the equation up to Fermat's time.

Fermat was not the first to propound, or even to discover a general

method of solving, the problem of finding any number of integral values of

x, y satisfying the above equation, wherein A is any integral number not

a square. But Fermat rediscovered the problem and was perhaps the first

1
Op. tit., Oeuvres de Lagrange, III. p. 775.

2 Ibid. p. 784.
3 Ibid. p. 788.

4 Oeuvres de Fermat, n. pp. -235-240.
5
Op. cit., Oeuvres de Lagrange, III. p. 790.

6 See Oeuvres de Fermat, n. pp. 231, 238 sqq.
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to assert that the general solution is always possible whatever be the

(non-square) value of A. The equation has a history of over 2000 years,

and that history, even in outline, requires, as it has now obtained, a book

to itself. This note will therefore be confined, practically, to recalling, in

the briefest possible way, the recorded stages anterior to Fermat, and then

to setting out somewhat fully the passages in Fermat's writings which throw

the most light on his connexion with the subject.

The Pythagoreans.
We have seen (p. 117 above) that the Pythagoreans had already

discovered a general solution of a particular equation of this type, namely

*-y=i,
by which all the successive values of x, y satisfying the equation were

ascertained. If x =/, y = q satisfies the equation 2X2

y~ = +
i, they proved

that the equation zx2

-y* = + i is satisfied by

the equation 2X2

y* = + i again by

and so on. As /= r, q= i satisfies 2x*-y* - + i, we have all the suc-

cessive solutions of 2x*yi = i by forming (pl , ^x), (pz , q^) etc. in accord-

ance with the law.

Archimedes.
The solution of the above equation by the Pythagoreans was evidently

used in order to obtain successive approximations to ^2.

Consequently, when we find Archimedes giving, without explanation, the

fractions fff anc^ Vs
5

zr as being approximately equal to ^3, the hypothesis of

Zeuthen and Tannery that he arrived at these approximations by obtaining

successive solutions of equations of a similar form, but with 3 substituted

for 2, is one of the most natural that have been suggested
2
. The equations

are in this case

XT
3_)'

2 = - 2.

Tannery shows how the law for forming successive solutions of such

simple cases as these can easily be found when we have found by trial

(which is not difficult) the three simplest solutions. If we take the more

general equation

1 H. Konen, Geschichte der Gleichung ft - Z? 2 =i, Leipzig (S. Hirzel), 1901.
2
Zeuthen,

"
Nogle hypotheser om Arkhimedes kvadratrodsberegning," Tidsskriftfor

Mathematik, vi. Raekke, 3. Aargang, pp. isosqq.; P. Tannery, "Sur la mesure du cercle

d'Archimede" in Memoires de la soc. des sciences phys. et nat. de Bordeaux, ii e Ser. iv.,

1882, p. 303; see Giinther, "Die quadratischen Irrationalitaten der Alien und deren

Entwickelungsmethoden
"

in Abhandlungen zur Gesch. der Mathematik, Heft iv. 1882,

pp. 87-91; Konen, op. cit. p. 15.
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of which x =p, y = #isai known solution, and put

it is sufficient to know the three simplest solutions in order to find a, ft, y,

8; for, substituting the values of (p, q\ (plt 9l )
and (p2 , ^2) where (/, ?2)

are formed from (plt ^) by the same law as (A, ^) are formed from (p, q],
we have four simultaneous equations in four unknown quantities. Taking
the particular equation

*2 -3/=i,
we easily find the first three solutions, namely (p=i,g =

o), (A = 2 ft
=

and (/2
=

7, ^2
=

4), whence

2=0, I - y,

"J
2a + f3, 4 = 2y + 8,

and a = 2, /3
=

3, y = i, 8 = 2, so that

But there is evidence that Archimedes dealt with much more difficult

equations of the type, for (as stated above, p. 123) the Cattle-Problem

attributed to him requires us to solve in positive integers the equation

x2 - 4729494^=1.
There is this difference between this equation and the simpler ones

above that, while the first solutions of the latter can be found by trial,

the simplest solution of this equation cannot, so that some general method,

e.g. that of continued fractions, is necessary to find even the least solution

in integers. Whether Archimedes was actually able to solve this particular

equation is a question on which there is difference of opinion ; Tannery

thought it not impossible, but, as the smallest values of x, y satisfying the

equation have 46 and 41 digits respectively, we may, with Giinther, feel

doubt on the subject
1

. There is, however, nothing impossible in the

supposition that Archimedes was in possession of a general method of

solving such equations where the numbers involved were not too great for

manipulation in the Greek numeral notation.

Diophantus.

Tannery
2 was of opinion that Diophantus dealt with the equation

x2 - Ay1 - i

somewhere in the lost Books of the Arithmetica. Diophantus does indeed

say (Lemma to vi. 15) that, if a, b are any numbers and ax^-b is a square

when x is given a certain value p, then other values of x greater than p can

also be found which have the same property ;
and Tannery points out that

1
Giinther, op. ctt., pp. 92-93 note. Cf. Konen, op. cit., p. 14.

2
Tannery,

"
L'Arithmetique des Grecs dans Pappus" in Memoires dt la see, des

sciences phys. et nat. de Bordeatix, ue Ser. III., x88o, pp. 370 sq.
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we can, by making suppositions of the same kind as Diophantus makes,

deduce a more general solution of the equation

when one solution (/, q] is known.

Put p1
= mx-

and suppose

p? - Aq? = m*x* - 2mpx +p
2 - Ax2 - 2Aqx - Aq

2 = i
;

therefore (since/
2 - Aq2 =

i)

mp + Aq
m2 -A '

and, by substitution in the expressions for/!, ylt we have

_ (m
2 + A)p + 2Amq __ zmp + (m

2 + A] qA= m*-A ' ^~ nf-A

and in fact/!
2 - Aq?= i.

If an integral solution is wanted, one way of obtaining it is to substitute

u/v for m where uz -Ai^-i, i.e. where u, v is another solution of the

original equation, and we then have

A = (^ + Av*)p + 2Auvq, q-i
= 2puv + (u

2 + Av*) q,

But this is all that we can get out of Diophantus as we have him, and

it will be observed that here too we must have ascertained two solutions of

the one equation, or one solution of it and a solution of an auxiliary equation,

before we can apply the method 1
.

1 It may be observed that, in the particular case of the equation jr2 -3_y
2=i, the

assumption of u, v satisfying the equation will not enable us to obtain from the formula

pl
= (u

2+ Av*)p + lAuvq, q\ ipuv + (u
2 + Av2

) q

above given the simpler formula otherwise obtained by Tannery (p. 279 above), namely

for, if (/i, ^i) is to be a different solution from (/, q), we cannot make =i, v= o, but

must take u= i, v=i, whence, putting A =3, we obtain

which is the same as/2 > ?2. the next solution to/i=
In order to get the latter we have to take u, v satisfying, not x2 -

$j/
2 =i, but

**-3^=-*
The values = i, v= i satisfy x2 -

3_y
2= -

2, and

and of course p\ = +(2/+ 3?), q\= +(/+ ?) can be taken, since they equally satisfy
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The Indian Solution.

If the Greeks did not accomplish the general solution of our equation,
it is all the more extraordinary that we should have such a, general solution

in practical use among the Indians as early as the time of Brahmagupta
(born 598 A.D.) under the name of the "cyclic method." Whether this

method was evolved by the Indians themselves, or was due to Greek

influence and inspiration, is disputed. Hankel held the former view 1

;

Tannery held the latter and showed how, from the Greek manner of

deducing from one approximation to a surd a nearer approximation, it is

possible, by simple steps, to pass to the Indian method 2
. The question

presumably cannot be finally decided unless by the discovery of fresh

documents; but, so far as the other cases of solution of indeterminate

equations by the Indians help to suggest a presumption on the subject,

they are, I think, rather in favour of the hypothesis of ultimate Greek

origin. Thus the solution of the equation ax by = c given by Aryabhata

(born 476 A.D.) as well as by Brahmagupta and Bhaskara, though it

anticipated Bachet's solution which is really equivalent to our method of

solution by continued fractions, is an easy development from Euclid's

method of finding the greatest common measure or proving by that process

that two numbers have no common factor (Eucl. vn. i, 2, x. 2, 3)
3
, and

it would be strange if the Greeks had not taken this step. The Indian

solution of the equation xy = ax + by + c, by the geometrical form in which

it was clothed, suggests Greek origin
4
.

The "cyclic method" of solving the equation

is found in Brahmagupta and Bhaskara 5

(born 1114 A.D.) and is well

described by Hankel, Cantor and Konen 8
.

The method is given in the form of dogmatic rules, without any proof

of the assumptions made, but is equivalent to a preliminary lemma followed

by the solution proper.

1
Hankel, Zur Geschichte der Math, im Alterthum und Mittelalter, pp. 203-4.

2
Tannery, "Sur la mesure du cercle d'Archimede" in Mem. de la soc. des sciences

phys. et nat. de Bordeaux, il" Ser. iv., 1882, p. 325; cf. Konen,
pp.

27-28; Zeuthen,
" L'Oeuvre de Paul Tannery comme historien des mathematiques

"
in Bibliotheca Mathe-

matica, VI 3 , 1905-6, pp. 271-273.
3 G. R. Kaye, "Notes on Indian mathematics, No. 2, Aryabhata" in Journal of the

Asiatic Society of Bengal, Vol. iv. No. 3, 1908, pp. 135-138.
4 Cf. the description of the solution in Hankel, p. 199; Cantor, Gesch. d. Math. 13,

p. 631.
5 The mathematical chapters in the works of these writers containing the solution in

question are contained in H. T. Colebrooke's Algebra with arithmetic and mensuration

from the Sanskrit ofBrahmegupta and Bhaskara, London, 18(7.
6

, Hankel, pp. 200-203; Cantor, I3 , pp. 632-633; Konen, op. cit., pp. 19-26.
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Lemma.

If x =p, y = q be a solution of the equation

Ay- + s = x2
,

and x =p', y = q'& solution of the equation

Ay
2 + s' = x2

,

then, say the Indians, x =pp' Aqq , y =pq p'q is a solution of the equation

Ay* + ss' = x2
.

In other words, if

Aq2 +s =/a<

Aq'
2 + s' =p'

2

then A (pq' p'q}
2 + ss' = (// Aqq'}

2
.

This is easily verified
1

.

In particular, taking s = s', we find, from any solution x =/, y = q of

the equation

a solution x -p
2 + Aq2

, y = 2pq of the equation

Ay
2 + s

2 = x2
.

Again, particular use of the lemma can be made when ^ = 1 or .y = + 2.

(a) If ^ = + i, and x =p, y = q is a solution of

Ay
2 + i = x2

,

then x =p2 + Aq2
, y = 2pq is another solution of the same equation.

If j = i, and x =/, y -
q is a solution of

Ay
z -i=x*,

then x =pz + Aq^ y = zpq is a solution of

Ay2 + i
- x2

.

(b] If J - 2, and x = p, y = q is a solution of

then x=p'
1 + Ay2

, y= zpq is a solution of

Ay
2 + 4 = x

2
.

In this case, since zpq is even, the whole result when the values of

x, y are substituted must be divisible by 4, and we have x = % (p
2 + A<f),

y -pq as a solution of the equation

Ay
2 +i=x2

.

For, since s=f -
Aq^, s'=/2 -

Aq"*,

ss'=(p*-Aq*)(p'*-Aq>*)
= (pp'Y+(Aqq')*

- A (pq'

=
{ (pp'Y lApp'qq' + (Aqq'?}

-
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Solution proper of the equation x2
-Ay*= i.

We take two numbers prime to one another, /, q, and a third number s

with no square factor, such that

the numbers being also chosen (in order to abbreviate the solution) such

that s is as small as possible, though this is not absolutely necessary.

(This is a purely empirical matter; we have only to take a rough ap-

proximation to ^A in the form of a fraction//^.)

[It follows that s, q can have no common factor
; for, if 8 were a

common factor of s, g, it would also be a factor of/
2
, and/

2
, q"

1 would have

a common factor. But /, q are prime to one another.]

Now find a number r such that

q l
= + is a whole number.

[This would be done by the Indian method called cuttaca (" pulveriser "),

corresponding to our method by continued fractions.]

Of the possible values of r a. value is taken which will make r2 - A
as small as possible.

Now, say the Indians, we shall have :

sl

-
is an integral number,

and Aql
* + sl

= (2^

(Again the proofs are not given; they are however supplied by Hankel 1

.)

1 Since q l
= ^ + q>

is an integral number, all the letters in q\s=p + qr represent

integers.

Further, s=p'
i -Aqi

;

therefore, eliminating s, we have

or p(pq\- i)=

Since /, q have no common factor, q must divide pq\ i ; that is,

PQ\ ~ l- =an integer.

We have next to prove that si = (r
2 -

A)fs is an integer.

Now ^_ A = (ti*-tf-<<9> = 9i'*-Wi> + *

t since

therefore
-

i
is an integer)

and, since s, q have no common factor, it follows that

Also
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We have therefore satisfied a new equation of the same form as that

originally taken 1

.

We proceed in this way, obtaining fresh results of this kind, until we

arrive at one in which s = i or + 2 or +4, when, by means of the lemma,

we obtain a solution of

Ay* + i = x2
.

Example. To solve the equation 6"jy
2 + i = x2

.

Since 82
is the nearest square to 67, we take as our first auxiliary equation

67. i
2 -3 = 82

,
so that/ = 8, q = i, * = -

3.

Thus ql
=---

. We put r= 7, which makes
q-^

an integer and at the
o

same time makes s1
= - ---- = 6 as small as possible.

Thus ?i
= -5> A = (/?i^ I )/^

= -4i,

and we have satisfied the new equation

Next we take qz
=

'
*

2

,
and we put r2 = 5, giving qz

= 1 1
;

thus

r 2 6?
-2- = -

7, and /2
= (p& -

i)/^ = 90, and

Next q3
= --

-, and we put r3
-

9, giving qs
= -

27 ;
therefore

r? 67 90 . 27 i

s3 = '- = -2, /, = = -221, and

6 7 .(2 7 )

2

-2=(22l)
2

.

As we have now brought our s down to 2, we can use the lemma, and

67 (2 . 27 . 22l)
2 + 4 = (22I

2 + 67 . 27
2

)

2
,

or 67(ii934)
2 + 4 = (97684 )

2
;

therefore, dividing by 4, we have

67(5 96 7 )

2

-f-i=(4884 2)
2

.

Of this Indian method Hankel says,
"
It is above all praise ;

it is

certainly the finest thing which was achieved in the theory of numbers

1 Hankel conjectures that the Indian method may have been evolved somewhat in

this way.

s=p'
i

is given, and if we put Aq'^ + s'=p'
z

, then

Now suppose^', q' to be determined as whole numbers from the equation^' -p'q= i,

and let the resulting integral value of pp' Aqq' be r.

Then A+ss' = r2
,
and accordingly r2 - A must be divisible by s, or s'=(A-r2

)js is

a whole number.

Eliminating p' from the two equations in p'', q', we obtain

and, as stated in the rule, r has therefore to be so chosen that (/ + qr}ls is an integer.
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before Lagrange
"

; and, although this may seem an exaggeration when we
think of the extraordinary achievements of a Fermat, it is true that the
Indian method is, remarkably enough, the same as that which was redis-

covered and expounded by Lagrange in his memoir of 1768'. Nothing is

wanting to the cyclic method except the proof that it will in every case

lead to the desired result whenever A is a number which is not a square ;

and it was this proof which Lagrange first supplied.

Fermat.

As we have already said, Fermat rediscovered our problem and was
the first to assert that the equation

3?-Af=l,
where A is any integer not a square, always has an unlimited number
of solutions in integers.

His statement was made in a letter to Frenicle of February, i657
2
.

Fermat asks Frenicle for a general rule for finding, when any number not a

square is given, squares which, when they are respectively multiplied by tlie

given number and unity is added to the product, give squares. If, says

Fermat, Frenicle cannot give a general rule, will he give the smallest value

ofy which will satisfy the equations 6ij^ + i = or
2 and 109^+ i =^? 3

At the same time Fermat issued a challenge to the same effect to

mathematicians in general, prefacing it by some remarks which are worth

quoting in full
4
.

" There is hardly any one who propounds purely arithmetical questions,

hardly any one who understands them. Is this due to the fact that up to

now arithmetic has been treated geometrically rather than arithmetically?

This has indeed generally been the case both in ancient and modern

works; even Diophantus is an instance. For, although he has freed

himself from geometry a little more than others have in that he confines

his analysis to the consideration of rational numbers, yet even there

geometry is not entirely absent, as is sufficiently proved by the Zetetica

of Vieta, where the method of Diophantus is extended to continuous

magnitude and therefore to geometry.
" Now arithmetic has, so to speak, a special domain of its own, the

theory of integral numbers. This was only lightly touched upon by Euclid

in his Elements, and was not sufficiently studied by those who followed

him (unless, perchance, it is contained in those Books of Diophantus of

1 "Sur la solution des problemes indetermines du second degre" in Mcmoires de

VAcad. Royale des Sciences et Belles-Lettres de Berlin, t. xxm. 1769 (=Oeuvres de

Lagrange, n. pp. 377 sqq.). The comparison between Lagrange's procedure and the

Indian is given by Konen, pp. 75-77.
2 Oeuvres de Fermat, II. pp. 333-4.
3 Fermat evidently chose these cases for their difficulty ; the smallest values satisfying

the first equation are ^=226153980, *= 1766319049, and the smallest values satisfying

the second are_y= 15140424455100, JT= 158070671986249.
4 Oeuvres de Fermat, II. pp. 334-5-
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which the ravages of time have robbed us); arithmeticians have therefore

now to develop it or restore it.

"To arithmeticians therefore, by way of lighting up the road to be

followed, I propose the following theorem to be proved or problem to

be solved. If they succeed in discovering the proof or solution, they will

admit that questions of this kind are not inferior to the more celebrated

questions in geometry in respect of beauty, difficulty or method of proof.
" Given any number whatever which is not a square, there are also given

an infinite number of squares such that, if the square is multiplied into the

given number and unity is added to the product, the result is a square.

"Example. Let 3, which is not a square, be the given number; when

it is multiplied into the square i, and i is added to the product, the result

is 4, being a square.

"The same 3 multiplied by the square 16 gives a product which, if

increased by i, becomes 49, a square.

"And an infinite number of squares besides i and 16 can be found

which have the same property.
" But I ask for a general rule of solution when any number not a square

is given.
"
E.g. let it be required to find a square such that, if the product of the

square and the number 149, or 109, or 433 etc. be increased by i, the

result is a square."

The challenge was taken up in England by William, Viscount Brouncker,

first President of the Royal Society, and Wallis 1
. At first, owing apparently

to some misunderstanding, they thought that only rational, and not neces-

sarily integral, solutions were wanted, and found of course no difficulty in

solving this easy problem. Fermat was, naturally, not satisfied with this

solution, and Brouncker, attacking the problem again, finally succeeded in

solving it. The method is set out in letters of Wallis 2 of zyth December,

1657, and 3oth January, 1658, and in Chapter xcvin. of Wallis' Algebra;

Euler also explains it fully in his Algebra*, wrongly attributing it to Pell
4

.

1 An excellent summary of the whole story is given in Wertheim's paper "Pierre

Fermat's Streit mit John Wallis" in Abhandlungen zur Gesch. der Math. ix. Heft

(Cantor-Festschrift), 1899, pp. 557-576. See also Konen, pp. 29-43.
2 Oeuvres de Fermat, ill. pp. 457-480, 490-503. Wallis gives the solution of each

of the three difficult cases last mentioned.
3
Euler, Algebra, Part II. chap. vn.

4 This was the origin of the erroneous description of our equation as the "
Pellian

"

equation. Hankel (p. 203) supposed that the equation was so called because the solution

was reproduced by Pell in an English translation (1668) by Thomas Brancker of Rahn's

Algebra; but this is a misapprehension, as the so-called "Pellian" equation is not so

much as mentioned in Pell's additions (Wertheim in Bibliotheca Mathematica, 1113,

1902, pp. 124-6; Konen, pp. 33-4 note). The attribution of the solution to Pell was a

pure mistake of Euler's, probably due to a cursory reading by him of the second volume
of Wallis' Opera where the solution of the equation ax2 + i =j2

is given as well as informa-

tion as to Pell's work in indeterminate analysis. But Pell is not mentioned in connexion

with the equation at all (Enestrom in Bibliotheca Mathematica, II1 3 , 1902, p. 206).
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Fermat appears to have been satisfied with the actual solution*, but

later he points out that, although Frenicle and Wallis had given many
particular solutions, they had not supplied a general proof

2
(i.e. presumably

that the solution is always possible and that the method will always lead

to the solution sought for). He says,
"

I prove it by the method of

descente applied in a quite special manner....The general demonstration

will be found by means of the descente duly and appropriately applied."

Further on, Fermat says he has discovered "general rules for solving

the simple and double equations of Diophantus."
"
Suppose, for example, that we have to make

2X2

+7967 equal to a square.

" / have a general rule for solving this equation, if it is possible, or

discovering its impossibility, and similarly in all cases and for all values

of the coefficient of x? and of the absolute term.

"
Suppose we have to solve the double-equation

2X + 3 square j

2X + 5
= square J

'

" Bachet boasts, in his commentary on Diophantus
3
,
of having dis-

covered a rule for solving in two particular cases
;

I make it general for

all kinds of cases and can determine, by rule, whether it is possible or not 4
."

Thus Fermat asserts that he can solve, when it is possible to solve

it, and can determine, by a general method, whether it is possible or

impossible to solve, for any particular values of the constants, the more

general equation

&-Ap=B.
This more general equation was of course solved by Lagrange. How

Fermat solved it we do not know. It is true that he has sometimes been

1 Letter of June, 1658, to Kenelm Digby, Oeuvres de Fermat, n. p. 402.
2 " Relation des nouvelles decouvertes en la science des nombres," Oeuvres, n. p. 433.
3 See on Diophantus IV. 39, and above, pp. 80-82.
4 With this should be compared Fermat's note on Dioph. iv. 39, where he says,

similarly :

"
Suppose, if you will, that the double-equation to be solved is

ix + 5 = square I

6x+ 3 = square |

'

" The first square must be made equal to 16 and the second to 36; and others will be

found ad infinitum satisfying the question. Nor is it difficult to propound a general rule

for the solution of this kind of question."

No doubt the double-equation in this case, as in the others referred to in the "Relation,"

would be transformed into the single equation

t*-Au*=B

by eliminating x. I think this shows how Fermat was led to investigate our equation :

a question which seems to have puzzled Konen (p. 29), in view of the fact that the actual

equation is not mentioned in the notes to Diophantus. The comparison of the two places

seems to make the matter clear. For example, the two equations mentioned above in

this note lead to the equation / 2 -3 2= -12, and the solution t= 6, = 4 is easily

obtained.
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credited with the very same solution of the equation x2

Ay* = i as that

given by Brouncker and Wallis
;
but this idea seems to be based on a

misapprehension of a sentence in Ozanam's Algebra (1702). Ozanam

gives the Brouncker-Wallis solution as " une regie generale pour resoudre

cette question, qui est de M. de Fermat "
;
and possibly the ambiguity

of the reference of "
qui

"
may have misled Lagrange and others into

supposing that the "regie" was due to Fermat.

For the history of the equation after Fermat's time I must refer to

other works and particularly that of Konen 1
. Euler, Lagrange, Gauss,

Jacobi, Dirichlet, Kronecker are the great names associated with it. I

will only add a few particulars with regard to Euler 2 as coming nearest

to Fermat.

In a letter to Goldbach 3 of loth August, 1730, Euler mentions that he

requires the solution of the equation x2

Ay* i in order to make

as? + bx + c a complete square. He goes on to observe that the problem
of solving x? Ay2 = i in integers was discussed between Wallis and

Fermat and that the solution (which he already attributes to Pell) was

set out in Wallis' Opera. There is an indication in this very passage that

Euler had then only read the Brouncker-Wallis correspondence cursorily,

for he speaks of the equation iogy
2 + i = x2 as being the most difficult

case solved by them, whereas the most difficult examples actually solved

were 433_y
2 + i = x2 and 3 1 ^y~ + i = x2

.

A paper of a year or two later
4 contained the proof that the evolution

of successive solutions of ay? + bx + c =y- when one is known requires that

one solution of at? + i = tf must also be known. Similarly, in his Algebra*,

he shows that the solution of the latter equation is necessary for finding all

the possible solutions of the equation ax~ + b =y
2
,
the importance of which

remark is emphasised by Lagrange
6
.

In the paper quoted in the last paragraph Euler finds any number

of successive solutions of ax2 + bx + c =_>'
2
,
and the law for forming them,

when we are given one value n of x which will make ax2 + bx + c a

complete square and one value p of which will make a 2 + i a complete

square, or, in other words, when an2 + bn + c = m2 and a/
2 + i = q

1
. He

then takes the particular case ax2 + bx + d2

=y
2 where (since x = o, y-d

satisfies the equation) we can substitute o for n and d for m in the

expressions representing the successive solutions of ax2 + bx + c=y
2

. Then

again, putting b - o and d=i, he is in a position to write down any

1
Konen, op. cit.; cf. Cantor's Geschichte der Mathematik, iv. Abschnitt xx., as

regards Euler and Lagrange.
2 Cf. Konen, op. cit. pp. 47-58.
3

Correspondence mathematique et physique de quelques celebres geometres du xvi I !*?/

siecle, publiee par P. H. Fuss, Petersbourg, 1843, I. p. 37.
4 " De solutione problematum Diophanteorum per numeros integros" in Commentarii

Acad. Petropol. 1732-3, VI. (1738), pp. 175 sqq. = Coinnientationes arithm. I. pp. 4-10.
6
Algebra, Part II. ch. VI.

6 Additions to Euler's Algebra, ch. vm.



THEOREMS AND PROBLEMS BY FERMAT 289

number of successive solutions of a? + i = rf when one solution =/,
t\-q is known. The successive values of | are

and the corresponding values of
rj are

i, 4, 2f-i, 44* -34, ...

the law of formation being in each case that, if A, B be consecutive values

in either series, the next following is 2qB - A.

The question then arises how to find the first values /, q which will

satisfy the equation. Euler first points out that, 'when a has one of many
particular forms, values of/, q can at once be written down which satisfy

the equation. The following are such cases with the obvious values of

/ and q.

a = & + i
; p =

ze, q =

a = aV* + 2CU?
6-1

; p =
e, q = a<?

6+1
i

(where a may even be fractional provided o^6
" 1

is an integer),

a = (ae
b + fte^)'

2 + 2a^~ l + 2fie*-
1

p =
e, 4 = a b+ l + fie*

a =

But, if a cannot be put into such forms as the above, then the method

explained by Wain's must be used. Euler illustrates by finding the least

values /, q which will satisfy the equation 3i
2 + i -rf, and then adds a

table of the least solutions of the equation a^ + i = rf for all values of

a (which are not squares) from 2 to 68.

The important remark follows
( 18) that the above procedure at once

gives a very easy way of finding closer and closer approximations to the

value of any surd *]a. For, since a/
2 + i = <f, we have >Ja

- J(f -
i)//,

and, if q (and therefore p also) is large, qjp is a close approximation to ,Ja ;

the error is not greater than ij(2/
2

Ja). Euler illustrates by taking ^6.

The first solution of 6^ + i = rf (after
=

o, -q- i) is / = 2, q - 5. Taking

then the series of values above given for a 2 + i = rf, namely

= o, /, 2pq, Atpf -p, ... A, B, 2qB - A,

il=i, q, 2f-i, 44* -&,..., F, 2qF-E,
and substituting p - 2, q = 5, the successive corresponding values P, Q
of |, t] respectively become

P=o, 2, 20, 198, 1960, 19402, 192060, 1901198,...

<2=i, 5, 491-485, 4801, 47525. 47449. 4656965.

and the successive values QjP are closer and closer approximations to J6.

It will be observed that the method of obtaining successive approximations

H. D. 19
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to Ja from successive solutions of a- + i - rf is the same as that which,

according to the hypothesis of Zeuthen and Tannery, Archimedes used in

order to find his approximations to ^3.

The converse process of finding successive solutions of a$? + i
-rf by

developing ,Ja as a continued fraction did not apparently occur to Euler

till later. In two letters' to Goldbach of 4th Sept. 1753 and 23rd Sept.

1755 he speaks of a "certain" method and of improvements which he had

made in the " Pellian
" method but gives no details. His next paper on

the same subject
2 returns to the problem of finding all the solutions of

ax1 + bx + c = y* or ax'
2 + l>=y

2 when one is known, and in the course of

his discussion of the latter he arrives at
" the following remarkable theorem

which contains within it the foundation of higher solutions.

"If x =
a, y = l> satisfies cur* +p y

2

,

and x =
c, y = d satisfies cur

2 + q =/-,

then x be + ad, y bd + aac satisfies ax'2 + pq =y2
."

That is to say, Euler rediscovers and recognises the importance of the

lemma to the Indian solution, as Lagrange did later.

More important is the paper of about three years later
3 in which Euler

obtained the solution of the equation x2 - Ay- = i by the process of con-

verting ,JA into a continued fraction, this course being the reverse of that

which was, according to the hypothesis of Tannery and Zeuthen, followed

by Archimedes, and to the feasibility of which Euler had called attention

in 1732-3. He begins by stating, without proof, that, if q-
- Ip

2 + i, then

q\p is an approximation to ^//, and qlp is
" such a fraction as expresses

the value of Jl so nearly or exceeds it so little that a closer approximation

cannot be made except by bringing in greater numbers." Next he develops

certain particular surds, namely N/( I 3)> V(^ 1
)
an^ V(^7)> a t̂er which he

states the process generally thus. If ^z be the given surd and v the root

of the greatest integral square which is less than z, the process will give

the successive quotients a, b, c, d, being found by means of the process

shown in the following table :

1

Correspondance etc., ed. Fuss, pp. 614 sq., 62959.
2 "De resolutione formularum quadraticarum indeterminatarum per numeros integros

"

in Novi Conimentarii Acad. Petropol. 1762-3, IX. (1764), pp. 3 i,<\<\.
= Coinmentat. arithm.

I. pp. 297-315.
3 "De usu novi algorithm! in problemate Pelliano solvendo" in Novi Conimentarii

Acad. Petropol. 1765, xi. (1767), pp. 28-66= Continental, arithm. \. pp. 316-336. The

paper seems to have been read as early as 15 Oct. 1759.



THEOREMS AND PROBLEMS BY FERMAT 291

Take

II. B=aa-A

III. C=B/>-.

yc-C

'.
=M-D

and

z-Fp

It follows that

v+A

<*

7

v+D
8

8

etc. etc.

(This is of course exactly the process given in text-books of Algebra,

e.g. Todhunter's.)

Euler now remarks as follows.

1. The numbers A, B, C, D ... cannot exceed v
;
the first, A, is equal

to v; since a ^ (v + A)/a, aa - A - B ^ z/, and so on.

2. Unless where one of the numbers a, ft, y, 8... is equal to unity,

none of the corresponding quotients a, b, c, d ... can exceed v.

3. When we arrive at a quotient equal to 2v, the next quotients will be

a, l>, c, d . . . in the same order.

4. Similar periods occur with the letters a, ft, y, 8... and the term

of this series corresponding to a quotient 2V is always i.

The successive convergents to the continued fraction are then investi-

gated and it is shown that, for successive convergents q[p beginning
with v/i,

q-
-

zp*
= -

a, + ft, -y, +8, - e etc. in order.

It follows that the problem is solved whenever one of the terms with a

positive sign, ft, 8, etc., becomes i.

Since unity for one of the terms a, ft, y, 8 corresponds to the quotient

2v, and each fresh period begins with 2V, the first period will produce
a convergent qjp such that q* zp-

= i
;
and the negative sign will apply

if the number of quotients constituting the period is odd, while the positive

sign will apply if the number of quotients is even. In the latter case we

have a solution of our equation at once; if, however, q--zp'* = -i, we

must go on to the end of the second period in order to get an even number

of quotients and so satisfy the equation
'

q'
1

zp- + i. Or, says Euler,

instead of going on and completing the second period, we can satisfy

the latter equation more easily thus.

Suppose q-
-

zp*
= -

i, and assume

Then q'-
-

zp'-
= 4^ + 4^ + i -

192
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[This last derivation of a solution of y
2 zx2

i from a known solution

ofy2 - zx2 = - i is of course the same as the Indian method of doing the

same thing, for they assumed/' = zpq, q'
= q

2 + zp
2
,
and q

2 + zp
2 - q

2+ (q
2 + i).]

We thus see that in Euler's method there is everything necessary to the

complete solution of our equation except the proof that it must always lead

to the desired result. Unless it is proved that the quotient 2V will actually

occur in the development of the continued fraction in every case, we cannot

be sure that the equation has any solution except x -
o, y - i.

I cannot, I think, do better than conclude by a quotation from

H. J. S. Smith 1

,
the first part of which is well known 2

.

" Euler observed

that [if T 2 - DU- =
i] TIU is itself necessarily a convergent to the value

of JD, so that to obtain the numbers T and U it suffices to develop JD
as a continued fraction. It is singular, however, that it never seems to

have occurred to him that, to complete the theory of the problem, it was

necessary to demonstrate that the equation is always resoluble and that

all its solutions are given by the development of >JD. His memoir

contains all the elements necessary to the demonstration, but here, as

in some other instances, Euler is satisfied with an induction which does

not amount to a rigorous proof. The first admissible proof of the re-

solubility of the equation was given by Lagrange in the Melanges de la

Societe de Turin, Vol. iv. p. 4i
3

. He there shows that in the development
of ,JD we shall obtain an infinite number of solutions of some equation of

the form T 2-DU2 = A and that, by multiplying together a sufficient

number of these equations, we can deduce solutions of the equation

T2-DU 2 -i. But the simpler demonstration of its solubility which

is now to be found in most books on algebra, and which depends on

the completion of the theory (left unfinished by Euler) of the development

of a quadratic surd as a continued fraction, was first given by Lagrange
in the Hist, de FAcademic de Berlin for 1767 and 1768, Vol. xxm. p. 272,

and Vol. xxiv. p. 236"*, and, in a simpler form, in the Additions to Euler's

Algebra
6
,
Art. 37."

1

"Report on the Theory of Numbers, Part ill.," British Association Reportsfor 1861,

London, 1862, p. $1$= Collected Works, Vol. i., Oxford, 1894, p. 192.
2 It is given in Cantor, Gesch. d. Math. iv. 1908, p. 159, and referred to by Konen,

op. tit. p. 51.
3 "Solution d'un probleme d'Arithmetique," finished at Berlin on 2oth Sept. 1768

and published in Miscellanea Taurinensia, iv. i'j66-i'j6<)=0euvres de Lagrange, I.

pp. 671-731.
4 The references are: "Sur la solution des problemes indetermines du second degre,"

read 24th Nov. 1768 and published in the Memoires de VAcadeniie Royale des Sciences

et Belles-lettres de Berlin, Vol. xxm., 1769, pp. 165-310=#>; de Lagrange, II.

PP- 377-535 > "Nouvelle methode pour resoudre les problemes indetermines en nombres

entiers," read 2ist June, 1/70, and published in Memoires de rAcademie Royale des

Sciences et Belles-lettres de Berlin, Vol. xxiv., 1770, pp. i%i-i$() = Oeuvres de Lagrange,
II. pp. 655-726.

5 The Additions of Lagrange were first printed as an appendix to lei>iens d'
'

Algcbre

par M. L. Euler traduits de Vallemand, Vol. II., Lyons, 1774; second edition, Paris,

1798; they were thence incorporated in Oeuvres de Lagrange, vn. pp. 158 sqq.
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SECTION III.

THEOREMS AND PROBLEMS ON RATIONAL RIGHT-ANGLED TRIANGLES.

i. On No. 20 of the problems about right-angled triangles added

by Bachet to Book vi. ("To find a right-angled triangle such that its

area is equal to a given number") Fermat has a note which shall be

quoted in full, not only for the sake of the famous theorem enunciated

in it, but because, exceptionally, it indicates the lines on which his proof
of the theorem proceeded.

"The area of a right-angled triangle the sides of which
are rational numbers cannot be a square number.

"This proposition, which is my own discovery, I have at length
succeeded in proving, though not without much labour and hard thinking.

I give the proof here, as this method will enable extraordinary develop-
ments to be made in the theory of numbers.

"
If the area of a right-angled triangle were a square, there would exist

two biquadrates the difference of which would be a square number. Con-

sequently there would exist two square numbers the sum and difference of
which would both be squares. Therefore we should have a square number

which would be equal to the sum of a square and the double of another

square, while the squares of which this sum is made up would themselves

[i.e.
taken once each] have a square number for their sum. But if a square

is made up of a square and the double of another square, its side, as I can

very easily prove, is also similarly made up of a square and the double of

another square. From this we conclude that the said side is the sum of the

sides about the right angle in a right-angled triangle, and that the simple

square contained in the sum is the base and the double of the other square

the perpendicular.

"This right-angled triangle will thus be formed from two squares,

the sum and the difference of which will be squares. But both these

squares can be shown to be smaller than the squares originally assumed

to be such that both their sum and their difference are squares. Thus,

if there exist two squares such that their sum and difference are both

squares, there will also exist two other integer squares which have the same

property but have a smaller sum. By the same reasoning we find a sum

still smaller than that last found, and we can go on ad infinitum finding

integer square numbers smaller and smaller which have the same property.

This is, however, impossible because there cannot be an infinite series

of numbers smaller than any given integer we please. The margin is too

small to enable me to give the proof completely and with all detail.

"
By means of these considerations I have also discovered and proved

that no triangular number except i can be a biquadrate."
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As Wertheim says, it may have been by following out the indications

thus given by Fermat that Euler succeeded in proving the propositions

that x4
-y* and x4

+y* cannot be squares, as well as a number of other

theorems connected therewith (Commentationes arithmeticae collectae, i.

pp. 24 sqq. ; Algebra, Part n. Chapter xin.).

Zeuthen 1

suggests a method of filling out Fermat's argument, thus.

The sides of a rational right-angled triangle can be expressed as

x*+y
2
,
x2 -y2

, 2xy.

As a common factor in the sides would appear as a square in the

number representing the area, we can neglect such a factor, and assume

that x2
-y" and therefore also x+y and x-y are odd numbers and thnt

x, y are prime to one another, so that x, y, x +y, x -y are all prime to

one another.

We have now to test the assumption that the area of the triangle

xy (x -y) (x +y)

is a square. If so, the separate factors must be squares, or

x = u\ y = v2
,

u2 + v2

=p
2
,
u2 -z? = g

2
.

(" There would exist two biquadrates the difference of which [#
4

z/*]
would

be a square, and consequently there would exist two squares the sum and differ-

ence of which [u
2 + vz

,
u- - v~] would both be squares" Fermat.)

From the last two equations we obtain

(" We should have a square number which would be equal to the sum

of a square and the double of another square [p
1 = 21? + q^\" Fermat.)

Now p + q and p q are both even numbers because, on the above

assumptions, p* and q" are both odd; but they cannot have any other

common factor except 2, since u2 and v2 are prime to one another. It

follows therefore from the last equation that

(2m
2 (n2

where ;/ is an even number.

We obtain, therefore,

The whole numbers m2 and are therefore sides of a new right-angled

triangle with the square area ----
.

4
1

Zeuthen, Geschichte der MatJiematik im XVI. and XVII. Jahrhundert, 1903, p. 163.
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(" If a square is made up of a square and the double of another square

[/
2 = 21? + g*],

its side is, as I can very easily prove, also made up of a

square and the double of another square p = tri*+ 2
{-] From this we

conclude that the said side is the sum of the sides about the right angle
in a right-angled triangle, the square [w

2

] being the base and the double of

the other square 2J the perpendicular," Fermat.)

That the sides of the new triangle are less than those of the original

triangle is clear from the fact that the square on its hypotenuse
2 or

x is a factor of one of the perpendicular sides of the original triangle
1

.

As now an infinite series of diminishing positive whole numbers is

impossible, the original assumption from which we started is also impossible.

It will be observed, as Zeuthen says, that the proof includes also the

proof of the fact that u4 - v* cannot be a square and therefore cannot be

a fourth power, from which it follows that the equation rf = z/
4 + w4 cannot

be solved in whole numbers, and consequently cannot be solved in rational

numbers either.

The history of this theorem would not be complete without an account

of a "proof originating with Fermat" which Wertheim has reproduced
2

.

In the small paper of Fermat's entitled
" Relation des nouvelles decouvertes

en la science des nombres 3 "
containing a statement of his method

of "diminution without limit" (descents infinie or indefinie) and of a

number of theorems which he proved by means of it, there is a remark

that he had sent to Carcavi and Frenicle some proofs based on this

method. And, sure enough, Frenicle gives a proof by this method of

the theorem now in question in his "Traite des triangles rectangles en

nombres 4
." Wertheim accordingly concludes that we have here a proof

of Fermat's. A short explanation is necessary before we come to Frenicle's

proof.

We obtain a right-angled triangle 2, x, y in rational numbers (z
2 = x2

+/)

if, a, b being any integers and a>t>, we put

z = a2 + b\ x = a2 - P, y = 2ab.

If a is prime to b and one of these numbers is even, the other odd, then

it is easily shown that the greatest common measure of x,y, z is i.

In the right-angled triangle a2 - 1? and zab are the perpendicular sides,

1 Zeuthen's inference at this point diverges slightly in form from what we actually find

in Fermat's own statement of his argument. Fermat does not actually say that the new

right-angled triangle is a triangle in smaller numbers than the original triangle and with

the same assumed property, but that its formation gives us two new square numbers the

sum and difference of which are squares, and which are smaller than the two squares

originally assumed to have this property.
2

Zeitschriftfilr Math. u. Physik, hist. litt. Abtheilung XLIV. 1899, pp. 4-6.

3 Ontvres de Fermat, Vol. n. pp. 431-6.
4 Memoires de VAcademie Royale des Sciences, v., Paris, 1729, pp. 83-166.
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and (a
2 - P) ab is the area, a, b are called the generating numbers (the

numbers from which the triangle is formed) and if a is prime to b, and one

of them is odd and the other even, so that x, y, z have no common factor

except i, the triangle is called & primitive triangle.

If (cP b^ab is the area of a primitive right-angled triangle and it

is enough to prove the proposition for such each of the three numbers

o? - P, a, b is prime to the other two. If, then, the product is a square

number, each of the three factors must be square, and in that case a2 - b2

will be the difference between two fourth powers. The theorems

(1) the area of a right-angled triangle in rational numbers cannot be

a square number, and

(2) the difference of two fourth powers cannot be a square,

accordingly state essentially the same fact.

The proof which Frenicle gives of the first of these propositions depends
on the following Lemmas.

Lemma I. If the odd perpendicular of a primitive right-angled triangle

is a square number, there exists a second primitive right-angled

triangle with smaller sides which has for its odd perpendicular

the root of the said square number.

If a2 - 1? = r3

,
it follows that a? = I? + <*, so that a, b, c are the sides

of a right-angled triangle. The odd perpendicular of this second triangle

is c, for by hypothesis c
3

is odd; consequently the even perpendicular is

b, while a is the hypotenuse. The triangle is "primitive" because a

common divisor of any two of the three numbers a, b, c would divide

the third, while by hypothesis a, b have no common factor except i.

Next, the second triangle has smaller sides than the first, since c<c2

,

a<a2 + t>
2

, b<zab.

By this lemma we can from the triangle 9, 40, 41 derive the triangle

3, 4, 5, and from the triangle 225, 25312, 25313 the triangle 15, 112, 113.

Lemma II. If in a primitive right-angled triangle the hypotenuse as

well as the even perpendicular were square, there would exist a

second primitive right-angled triangle with smaller sides which

would have for hypotenuse the root of the hypotenuse of the first,

for odd perpendicular a square number, andfor even perpendicular

the double of a square number.

Let the sides of the first triangle be a? + bz
,
a- - b-, zab. If zab were

a square, ab would be double of a square ; therefore, since a, b are prime

to one another, one of these two numbers, namely the odd one, would

be a square, and the other, the even one, would be double of a square.

Let a be the odd one of the two, b the even. If now the hypotenuse

a2 + b- were a square number c*, we should have a second right-angled

triangle a, b, c which would necessarily be primitive and in which the sides

would be smaller than those of the first triangle; for c<c, b<2ab and

a < a" b~ since a + b> a, a b^ i .
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By means of the above two lemmas combined we can now prove that

the area of a primitive right-angled triangle cannot be a square number.

Let the sides of the triangle be c? + lr, a2 - F, zab. If now the area

were square, the product of the perpendicular sides would be double of

a square. But the perpendicular sides are prime to one another. There-

fore the odd perpendicular a- - P would be a square, and the even

perpendicular zab the double of a square. But, if cr-lr were equal to

^, we could (by the first Lemma) find a second primitive triangle with

smaller sides in which the odd perpendicular would be t, the even per-

pendicular fi, and the hypotenuse a. Again, since zab would be double

of a square, ab would be a square, and, since a is prime to b, both a and

b would be squares. The second triangle would accordingly have a square

number both for its hypotenuse (a) and for its even perpendicular (b).

That is, the second primitive triangle would satisfy the conditions of the

second Lemma, and we could accordingly derive from the second primitive

triangle a third primitive triangle with still smaller sides which would,

exactly like the first triangle, have a square number for its odd perpendicular,

and for its even perpendicular the double of a square number.

From this third triangle we could obtain a fourth, and by means of the

fourth we could obtain a fifth with the same property as the first, and so

we should have an unending series of primitive right-angled triangles, each

successive triangle having smaller sides than the one before, and all being

such that the odd perpendicular would be a square number, the even

perpendicular the double of a square number, and consequently the area

a square number. This, however, is impossible since there cannot be an

unending series of integral numbers less than any given integral number.

Frenicle proves, by similar considerations, that neither can the area of a

right-angled triangle in rational numbers be Hie double of a square number.

In enunciating Fermat's problems on right-angled triangles I shall in

future for brevity and uniformity use 17, to denote the three sides, while

will always represent the hypotenuse and & t\ the two perpendicular sides.

2. To find a right-angled triangle (, 17) such that

t + V =

[Since
"' = * + if, this problem is equivalent to that of finding .r, y such

that

which is Question 17 in Chapter xiv. of Euler's Algebra, Part 11.]

first method.

Form a right-angled triangle from the numbers x + i, x; the sides will

then be
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We have then the double-equation

2X* + 2X+ I = U-
|

2X2 + 4X + I = V2
j

The ordinary method of Diophantus gives the solution x = - ^- >
trie

triangle will therefore be formed from -f- and --1
/- or, if we take the

numerators only, -5 and -
12, and the triangle is (169,

-
119, 120) which

is equally the result of forming a triangle from + 5 and + 12.

But, as one of the perpendiculars is negative, we must find another

value of x which will make all three sides positive.

We accordingly form a triangle from x + $ and 12, instead of from

5 and 12, and repeat the operation. This gives for the sides

t,- x2

+10^+169, g = x- + IQX- 119, 77-- 243;+ 120,

and we have to solve the double-equation

x2 + iox+ 169 = u\

x2 + 343; + \-vi
.

Making the absolute term the same in each, we have to solve

x2 + lox + 169 = u2
,

1693? + 57463; + 169 = v'
2
.

The difference is i68x- + 57363:, which we may separate into the factors

143:, i2x + -i-8T
6-.

(the sum of the terms in x being 26x or 2 . 133:).

Equating the square of half the sum of these factors to the larger

expression, or the square of half their difference to the smaller, we find

in the usual way

The triangle is therefore formed from -|iyf-, I2
>
or ^rom 2I 595>

246792, and the triangle itself is

4687298610289, 4565486027761, 1061652293520,

the hypotenuse and the sum of the other two sides being severally squares.

Second method.

This is the same as the first method up to the forming of the triangle

from x + 5 and 12 and the arrival at the double-equation

3?
2 + iox+ 169 = u2

,

x2 + 343; + i = v2
.

Multiply the two expressions together, and we must have

x* + 44X
3 + 5io3:

2
-f 57563;+ 169 = a square

this gives, as a matter of fact, the same value of x, namely
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and the triangle is the same as before
1

.

In his note on Diophantus vi. 22 Fermat says that he confidently

asserts that the above right-angled triangle is the smallest right-angled

triangle in rational numbers which satisfies the conditions.

[The truth of this latter assertion was proved by Lagrange
2

. Lagrange
observes that, since +

rj =y-, g + rf = #*, say, we have, if we put z for -
>/,

Z2 +/ = 2*,

or 2X* -y* = z
2
,

and, if x, y is any solution of the latter equation,

1 For comparison we may give Euler's solution (Algebra, Part n., Art. 240; Commen-

tationes arithmeticae, n. p. 398).

We have to solve the equations

First make x2+y2 a square by putting x=a? -
IP, y= iab, so that

To make the last expression a fourth power put a=p^-qi
, b= ipq, so that

a> + *=(/*+ ?*)',

and accordingly ** +y*= (p* + q*f.

We have now only to make x+y a square.

Now x=a?-lP=p*-6pz
q'
i + q*, y= iab=4p*q-4pq3 ;

therefore /4 + \p*q
- 6>V2 - 4A/

3+ ?*
= a square.

In solving this we have to note that /, q should be positive, p must be >q (for other-

wise^ would be negative), and a>b in order that x may be positive.

Put

and we obtain $fq -
6ffi

2= - $fq + 6pV, whence p\q= |
.

But, if we put/= 3, q= i, we find x= - 1 19, a negative value.

To find fresh values, we can substitute for / the expression %y + r and solve for the

ratio q\r; then, by taking for q the numerator and for r the denominator of the fraction

so found, we find a value for / and thence for x, y. This is Euler's method in the

Algebra. But we avoid the necessity for clearing of fractions if (as in the Comment.

ariihm.) we leave 2 as the value of q and substitute 3 + z for 3 as the value of/.

We then have /4= 81 + io8z/+54
2 +

6/
2
^
2= 216 i 44"' 24^

2
,

-4/^3= _ 96-32^,
+ <?*= 16,

whence x+y= i -t- 148^+ iO2Z>2 +2OZ'3 + z/
4= a square=(i + 74W-z^)

2
, say;

and we obtain

1343 = 42^, or -=, and / = 3 +z'=-^, while q = ^.

Taking integral values, we put/=i469, ^= 84.

Therefore a= 1385 . 1553 = 2150905, =168.1469 = 246792,

and ^= 4565486027761, y= 1061652293520,

which is the same as Fermat's solution.

2 N. Mhnoires de fAcad. Royale des Sciences et Belles-lettres de Berlin, annee 1777,

Berlin, 1779= Oeuvres de Lagrange, IV. pp. 377-398.
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He sets himself therefore to find a general solution of the equation

2X4
_y

4 = z2 and effects it by a method which is a variation of Fermat's

descente, one of the most fruitful methods, as Lagrange observes, in the

whole theory of numbers. The modified method consists of two parts,

(i) a proof that, assuming that there exist integral values of x, y greater

than r which satisfy the condition 2X* J>*
= z

2
,

there are still smaller

integral values which will also satisfy it, (2) the discovery of a general

method of deducing the latter from the former. This being done, and

it being known that x- i, y = i are the minimum values, the successive

higher values are found by reversing the process. Lagrange found that

the four lowest values for x, y give the following pairs of values for
, 77,

namely
(1) =I

, 77
=

0,

(2) =120
, 77

= -ii9,

(3) -2276953 , 77
= -473 3o4,

(4) =1061652293520, 77
= 4565486027761,

so that the last pair (4) are in truth, as Fermat asserts, the smallest possible

values in positive integers.]

3. To find a right-angled triangle , , 77 such that

[This is of course equivalent to solving

x-y = /
2

|

x* +/ = it?
\

Form a triangle from the numbers x + i, i
;
the sides will then be

= x'*+2X + 2,
= X2 + 2X, f)=2X+2.

We have then to solve the double-equation

Solved in the ordinary way, this gives x = -
1|- ; consequently the

triangle is formed from -
T
5
^, i, or from -5, 12.

We could proceed, as in the last problem, to deduce a new value for x,

but we observe that the triangle formed from 5, 12, i.e. the triangle 169,

119, 1 20, satisfies the conditions.

4. To find a right-angled triangle , , 77 such that

+ mr)
where m is any number.

Fermat takes the case where m = 2.

Form a triangle from x, i; the sides are then = x''
1 + i, f = #2 -

i,

7 = 2*.
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Therefore

I must both be squares.

The difference = 24.*, and by the usual method we find x - T\.

But = x2 - i is negative unless x> i. We therefore begin afresh and

form a triangle from x + 5, 12.

The sides of this triangle are

x*+iox+i6(), x?+iox 119, 24^+120.

We have therefore to solve the double-equation

x?+ iox+ 169 = &t
2

|
x*+ $Sx+ 121 = z>

2
)

Fermat multiplies the two expressions together and puts

x4 + 6&X3 + &JOX
2 + noi2x + 20449 = a square

= (143 + -Yfar*
-
ffff|&f^f, say ;

and the triangle is formed from 103447257961, 17749110120.

The double-equation could also have been solved by the usual

Diophantine method, as in the next problem to be* given.

5. To find a right-angled triangle , , rj such that

_.!*}
where m is any number.

Suppose that m - 2.

Form a triangle from x + i, i, so that the sides are

= X?+ 2X + 2, = X2 + 2X, 1}
2X + 2.

Therefore we have to solve

X2 + 2X + 2 = U*
'

Solving in the usual manner, we obtain x = -
$i, so that the triangle is

formed from -^, i, or from -
5, 12, and is therefore (169, 119, 120).

We have to replace the value of x by a value which will avoid the

negative sign. Form a triangle, then, from # 5, 12.

The sides are or
2 - lox + 169, x2 - 10^-119, 24^-120.

The double-equation now becomes

x2 - iox+ 169 =

x3 58.*+ 121

Multiply the second equation by iff, and we nave to solve

Xs - iox+ 169 = u*
)

T -If
*-" ~ ^nrrx + l ^9 = v )

= w2 )

=1? }
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The difference = ^x* - -8^2-x = T\ x (ftx -
f^).

Equating the square of half the difference of the factors to the smaller

expression (or the square of half the sum to the larger), we have

-^ttm1
.

and the required triangle is formed from 4363225, 552552, the sides being

19343046113329, 18732418687921, 4821817400400.

Or again in this case we can multiply the expressions or 10^+169
and x2 -

580; +121 and put their product

x4 6&X3 + S"jox
2

1 10120; + 20449 a square
/ T A t 5 5 6 A* _i_ .v2\2 our=
( J 43 - -\-^-x + x

) >
say>

and the result will be the same as before,

X

6. To find a right-angled triangle , , 77
J^ /$/

= 2
)

ztf/jm- m is any given number.

Let m =
3. Form a triangle from # + i, i

;
its sides will be

X2 + 2X + 2,
= X~ + 2X, Tf]

2X + 2.

We have therefore to solve the double-equation

Solving this in the ordinary manner, we shall find x = TV.

Hence the triangle is formed from j!*, i, or (in whole numbers) from

13, 12
;
the sides are therefore 313, 25, 312.

Fermat also finds the solution by multiplying the two expressions and

making the product a square;

x4 + lox3 + 22#2 + i2x a square

=
(x

2 + $x |^)
2
, say.

This gives the same value of x as before, x = ^; and the triangle

is 3i3, 25, 312.

7. Jb find a right-angled triangle , ^, 17 such that

where m is a given number.

Fermat takes the case m 3.

Remembering that in the corresponding problem with a plus sign we

found the triangle 313, 25, 312 which is formed from 13, 12, we form the

triangle in this case from x 13, 12
;

its sides are

= #2 26# + 313, = #2 - 26.*; + 25, 17=24^-312.
We have then x'

2 - 26x + 25 = u-

x-- gSx + 96!=".
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Multiplying the first expression by ^U, we have to solve the double-

equation

*2 - 98* + 961 =

The difference = Y/-*
3 - m^-x = ^x (^-x - i-W-)-

Proceeding as usual, we find * = .*fj8l ; the triangle is formed
from x- 13, 12, or (in whole numbers) from 23542921, 3820440, and the
sides are

568864891005841, 539673367418641, 179888634210480.
The same result is obtained by multiplying the expressions x~ - 26* + 25

and x~ qSx + 961 and making the product a square; we put

x4 - 124^ + 3534#
2 - 27436^+ 24025 -a, square

and the result is x = l^ffi|i, as before.

8. To find a right-angled triangle , , *}
such that

+ mt] - v2

where m is any given number.

Suppose m - 2. Form a triangle from x + i, i
;
the sides are

= X? + 2X + 2,
= ^3 + 20-',

We have then to solve the double-equation

X2 + 2X - U-

The usual method gives x= \, and the triangle is formed from f , i, or

(in whole numbers) from 5, 4, being the triangle (41, 9, 40).

Since + r;
= :x;

2
+4:r + 4 = a square, we have actually solved the problem

offinding a right-angled triangle , f, rj such that

=

+ ri
=

9- To find a right-angled triangle , , 17 such that

i=a
#/?7

= V
)

where m is a given number.

Suppose m -
2.

Since the corresponding problem with a plus sign just preceding has

the solution (41, 9, 40) formed from the numbers 5, 4, we form a triangle

in this case from re -5, 4; the sides are

= x'
2 - IQ.V + 4 r,

= re
2 IQX + 9, i/

- 8* - 40.
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We have then to solve the double-equation

9 =

X2 26x + 121 =

De Billy (or Fermat) observes that this double-equation "seems to admit

of solution in several ways, but it will be found that it is hardly possible to

find a practical solution except by the new method "
(expounded earlier in

the In-ventum Nbvum) of making the absolute terms equal (instead of using

the equal terms in x2
,
which method gives, in fact, the value x - o). That

is to say, we make the absolute terms in the two expressions equal by

multiplying the first by if1 '
and the double-equation becomes

1 2 1 ~2 1 210 v , T _ T , >:

p XT
TJ

X + I 2 I = U

X2 - 26X+ 121 = V'

The difference =^x2 -^x = x (2 x - ^).
Equating the square of half the difference of the factors to v1

,
or the

square of half their sum to u"2
,
we find x = --.

Therefore the triangle is formed from 4^3
-, 4 or (in whole numbers)

from 493, 132, and the sides are 260473, 225625, 130152.

Since -77 =^- i&c + 8i =a square, the above actually amounts to the

solution of the problem offinding a right-angled triangle , , T/ such that the

three conditions

are simultaneously satisfied.

De Billy (or Fermat) observes however that, while the above one solution

satisfies the conditions of both problems, it is not so with all solutions of

the problem involving the two conditions only; but v\\\y primitive triangles

satisfying the conditions of that problem satisfy the additional condition.

Thus the triangle (624, 576, 240) is such that one of the perpendicular

sides is a square and the difference between the hypotenuse and twice the

other perpendicular is also a square, but the hypotenuse minus the latter

perpendicular is not a square.

10. Tofind a right-angled triangle , , r/ such that

Assume x, i - x for the sides
, 17 about the right angle respectively.

This supposition satisfies the second condition.

Again, since gr]
= x-x2

,
the third and fourth conditions are satisfied,

for tf = x\ w*=i
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It remains to satisfy the conditions

n=i -x = t* )
t.

and 4 -e +T= ! 2* + 2#2 = a square)

The difference = 2X2 x = \x (4^-2), and we find, in the usual way,

The triangle is (^, |-, ^).

n. Tofind a right-angled triangle , , r/ such that

= a cube
j

f>7
= a square]

Fermat assumes =i, f\
= x, so that the first condition is satisfied,

i being a cube.

We must now have i-x = u*)

and also
"2 = i

2 + tf
= i + y? = v1

]

The difference = x2 + %x = x (4^ + 2), and we find x = - f|f .

In order to derive a positive value for # we substitute y 1-|4 for x in

the equations, which gives

Make the absolute term in the first equation equal to that in the latter

by multiplying by ,
and we have to solve

The difference =/ -

We find accordingly

and

The triangle is then

12. Tofind a right-angled triangle , ^, 77 jw// that

Form a triangle from the numbers x+ i, x ; the sides are

=2*2
+2.r+I, =2X+I, r)=

Thus ^ +^ = 2X* + $x* + $x + i must be a square.

Suppose 2x3 + 5** + 3* + i = (|* + i )
s
,
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Now substitute y - -- for x in the expression to be made a square, and

we have

2/ -^/ + Hy + |f| = a square

whence 7 =*&&, and * =

The triangle is accordingly found.

13. Tofind a right-angled triangle , , 77
such that

Form a triangle as before from x+ i, x, and in this case we shall have

2X* + 3#
2 + 3# + i = a square

= (f*+i)
2
, say,

whence x = f .

Substitute ^ -
f for ^ in the expression to be made a square ;

thus

2^ = a square

whence .7
=Wf .

and

the triangle being therefore

ttttffl,

14. To find a right-angled triangle ^ , t\ such that

Let =
A;, >j

= i
;
then 2 = a^ + i = a

square]

Also, by the condition of the problem, iv
2 + f# + i = a square)

The usual method of solution gives # = !

Substitute therefore j -
1-| for x in the two expressions, and we have

the double-equation

Or, if we make the absolute term in the first expression the same as in

the second by multiplying by jf||,

The difference = ff^/ - Ullj =Hy(Wy ~
fHf).

and we find j = ffiff,
so that x=y- |f =^AV-

Therefore the two perpendicular sides of the triangle, in whole numbers,

are 39655, 129648, and the hypotenuse is 135577.
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15. Tofind a right-angled triangle , , ij such that

(
+ -t]f + b&l = a square.

This problem is mentioned in Fermat's letters to St Martin of 3ist May
and to Mersenne of ist September i643

x
. The result only is given (in

the letter to Mersenne), and not the solution ; but it can easily be worked

out on the lines of the solution of the preceding problem.

Let = x, i)
= i ; we must therefore have

L
both squares.

Solving in the usual way by splitting the difference f x into the factors

zx we find x = f$.

Substitute _y f$ for x in the two expressions, and we have to solve

Multiply the last by (ff)
2 so as to make the absolute terms the same

and we have to solve

The difference =
{(f|)

2-

We therefore put (y
-^^f=/ - fty +

whence y(%&-
ft) = <

and^-^^^, so that *=^-ft = ^

The required triangle is therefore (V&Vo
8

* V/sWi or
>

in

numbers, (205769, 190281, 78320).

1 6. Tofind a right-angled triangle ,

^ + m . %rj = a square.

Fermat takes the case where m = 2.

Form a triangle from the numbers x, i
;
the sides are then

=*+!, (=3?- I, 1J=2X.

Thus we must have (* + i)
2 + 2^: (- i) a square, that is,

x* + 2^ + 2^* - 2X + i = a square

=
(* + * + |)

2
, say,

whence x ^.

1 Ofuvrfs de Fermat, II. pp. 260, 263.
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But this value makes x2 - i negative ; so we must seek another by

putting y + \ for x in the expression to be made a square.

We have f + 3/ + Qy2 -
T\jv + \\\ = a square

This gives y = HIHI, and x =y + }
=|||.

Therefore the triangle is generated (in whole numbers) from 571663
and 436440.

De Billy adds that there is one case in which the problem is impossible.

Tannery observes in a note that this remark seems to refer to the case in

which m = 8.

17. To find a right-angled triangle , , i]
such that

-\&\ = a square.

Form a triangle from xi, 4 ;
the sides will then be

= *2 -2* + i7,
= x*-2x-is, r

l
= 8x-&.

Thus (x
z -2x- \$f-(4x- 4) (x

2 -
2^-15) must be a square, that is,

x* Sx3
1 4#

2 + ii2x + i65 = a square

- (x
2 - 4* -is)

2
, say.

This gives x =
*-/-,

and accordingly, to find another value, we substitute

y -Y for x in the expression to be made a square.

We must therefore have

y -
38/ + i<y>-I/

-
*8iy + &3^A = a square

This gives y = VAS and * =j -Y = VTIT-

The triangle is therefore formed from -6
^$p, 4, or (in whole numbers)

from 6001, 2280.

The sides are therefore 41210401, 30813601, 27364560.

1 8. Tofind a right-angled triangle , , r\
such that (if >

ij)

(
-

r/f
-

2tf
= a square.

This problem is enunciated in Fermat's note on vi. 22. He merely
adds that the triangle (1525, 1517, 156) formed from 39, 2 satisfies the

conditions, but does not give the solution.

The solution is however easy to obtain by his usual method, thus.

Form a triangle from x, i, so that

= *"+!, = #2
-I, t]=2X.

Then (t-r)Y-2rf = (x
z-2X-iY-%xi

= x*- 4X
3 -
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This has to be a square ; let it be equal to (x
2 - 2x - $y, say ; this gives

= 2ox + 25,

x - -

The triangle formed from -f, i, or from -3, 2, will have one side

negative. To avoid this, we proceed as usual to form a triangle from

-. 2.

Thus =y-6.r+i3, t=y*-

and (-i?)-2if = (/-iqy+ 17)'- 2(47-12)'

=y 2qy
s + I02J

2 -
1487 + i.

In order that this may be a square, suppose it equal to (jr- loy
-

i)
2 or

y*
-

2oy* + gSy + 2oy + i.

It follows that 1023? 1487 = gSy
2 + 2oy,

and y = 42.

The triangle required is formed from y~3, 2, that is, from 39, 2,

and is accordingly 1525, 1517, 156.

Fermat does not tell us in the note on vi. 22 what use he made of this

problem, but the omission is made good in a letter to Carcavi
1

,
where he

says that it was propounded to him by Frenicle (who admitted frankly that

he had not been able to solve it), and that it served to solve another

problem which had occupied Frenicle. The latter problem is the

following.

19. Tofind a right-angled triangle , , t] such that

1-
>/

j-

are all squares.

*-lJ

Fermat does not actually give the solution, but presumably it was

somewhat as follows.

Form a triangle from two numbers x, y ;
the sides are then

Now -
T/
- x?+y - 2xy and is ipsofacto a square.

The other conditions give
x3

+y* = a square,

and or
! -y!

-2^>' = (^-j>')
2 -2/ = asquare.

These conditions are satisfied by the two perpendicular sides of the

triangle of the last problem, that is, by x= 1517, y= 156.

i Oeuvres de Fermat, n. p. 265.
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The triangle required is therefore formed from 1517, 156 and is

(2325625, 2276953, 4733 4)-

The present seems to be the appropriate place for a problem contained

in a letter from Fermat to Frenicle the date of which was probably

15 June 1641'.

20. Tofind all the right-angled triangles in integral numbers such that

the perpendicular sides differ by i.

If a right-angled triangle is formed from x, y, the difference between

the two perpendiculars is either x*yi

2xy or 2xy-(x
2
-y*), that is

to say, either (x-yf2yi or zy
i -(xyf. As this difference is to be i,

we have to find all the integral solutions of the equation

2y
t

-(x-y)* = l.

Those who are familiar with the history of Greek mathematics will here

recognise an old friend. The equation is in fact the indeterminate

equation

*-**! i,

which the Pythagoreans had already solved by evolving the series of

"side-" and "diagonal-" numbers described by Theon of Smyrna, the

property of which they proved by means of the geometrical theorems

of Eucl. n. 9, to.

If x, y are two numbers such that

2X2

y^ + i,

then the numbers x +y, 2X +y will satisfy the equation

2*-,f = -i;
fresh numbers formed from x +y, 2x +y by the same law will satisfy the

equation

2^-7,
2 = +I,

and so on.

Take now the equation

2)>
2 -

(* -j)
2 =

I,

where x, y are two numbers from which a right-angled triangle has been
formed. We can deduce a right-angled triangle formed from x', y' where

2/
2

-(*'-/)
2 =+i;

for by the above law of formation we have only to take

y=y + (x-y) = x,

x' -y' = 2y+(x -y) = x +y,

whence also x' = 2X +y.

1 Oeuvres de Fermat
',
n. pp. 321 sqq.
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Fermat gave two rules for the formation of this second triangle. The
first rule is in the letter above quoted.

First Rule. If h, /, b be any right-angled triangle satisfying the con-
dition (h being the hypotenuse, / > b and / - b = i), then, if a triangle be
taken in which

the least side =2h+p + 26,

the middle side =2/i+j>+ 26+ i,

the greatest side = 3^ + 2 (/ + 6),

this triangle also will be a right-angled triangle satisfying the condition.

To verify this from the above considerations we have to consider two

cases, according as 2xy is greater or less than x2

-y
2
.

Take the case in which 2xy > x2

-y
2

;
then

2/-(*-jf=+i,
and accordingly

2/
2

-(*'-/)* = -i,

or x'
2
-y'

2 > 2x'y'.

The least side, therefore, of the second triangle

2x'y = 2X (2X +y) = 2 (x
2
+/) + (axy) + 2 (x

2

-/) ;

the middle side

x'2 -y'
2 = 2x'y + i

;

and the hypotenuse

X
1* +/2 = (ax +yf + x2 = 3 (*

2

+/) + 2 (x
2-/ + axy).

The expressions on the right hand are those given by Fermat's rule.

Second Rule.

This rule is given in a letter of 31 May 1643 probably addressed

to St Martin 1
.

Fermat says : Given any triangle having the desired property, then, to

find another such triangle from it, "subtract from double the sum of

all three sides each of the perpendiculars separately [this gives two of the

sides of the new triangle], and add to the same sum the greatest side [this

gives the third side]."

That is to say, the sides of the new triangle are respectively

2Xy)- 2Xy,

1 Oeuvres de Fermat, II. p. 259.
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In fact the three expressions reduce as follows :

2 (2X
2 + 2xy) (x

2

y
2

)
= 33? + ^xy +y

2 = (2X + y}
2 x2

,

2(2X
2

+2Xy)-2Xy=2x(2X +y),

2 (2X* + 2xy) + x
2
+y

z = (2x +y)
2 + x2

;

and the result agrees with the formation of the triangle from x', y' above.

From the triangle (3, 4, 5) we get (20, 21, 29); from the latter the

triangle (119, 120, 169), and soon. The sixth such triangle is (23660,

23661, 33461).

21. To find all the rational right-angled triangles in ivhole numbers

which are such that the two perpendiculars differ by any given number.

To his explanation of the First Rule above, applicable to the case

where the given number is i, Fermat adds in his curt way : "same method

for finding a triangle such that the difference of the two smaller sides is

a given number. I omit the rules, and the limitations, for finding all the

possible triangles of the kind required, for the rule is easy, when the

principles are once admitted."

He adds, however, to his Second Rule 1
its application to the case

where the given number is 7.

There are, he says, two fundamental triangles with the desired property,

namely 5, 12, 13 and 8, 15, 17. [In the case of the former 2xy > x2

-y*,

and in the case of the second x2
-y

2 > 2xy.]

From the first triangle (5, 12, 13) we deduce, by the Rule, a triangle

with the sides 2 . 30- 12, 2 . 30 -5, 2 . 30 + 13 or (48, 55, 73) ;
from the

second a triangle with the sides 2.40-15, 2.40-8, 2.40+17, or

(65, 72, 97)-

And so on, ad infinitum.

Next to the explanation of the first of the above Rules Fermat

mentions, in the same letter, the problem

22. To find right-angled triangles in integral numbers
, , 77 (>/)

such that
v \

are both squares.

He observes that alternate triangles of the series in which the two

smaller sides differ by i satisfy the conditions, those namely in which the

smallest side 77 is 2xy and not x2 -y2
; for x*+y

2

-2xy is a square, and

-7, being equal to i, is also a square.

1 Oeuvres de Ffrmat, n. p. 250.
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Thus, while 3, 4, 5 does not satisfy the conditions, (20, 21, 29) does,

and, while the next (119, 120, 169) does not satisfy the conditions, the

triangle after that, namely (696, 697, 985), does.

Frenicle naturally objected, in his reply, that the triangles should not

be limited to those in which the smaller square representing the difference

between the perpendicular sides is r, and proposed the problem in the form

Tofind all the triangles (, , 77)
such that

are both squares,

and one square does not measure the other.

Fermat seems to have, in the first instance, formed the triangle

from two numbers x, y where

x = r*+ i, y= 2r-2,

and then to have given the more general rule of forming a triangle from

x = rs + s
2
, y=2(r-s)s,

where r, s are prime to one another (Letter from Frenicle of 6 Sept.

1641)'.

It appears from a letter of Fermat's to Mersenne of 27th January

i643
2 that St Martin propounded to Fermat the problem, apparently

suggested by Frenicle 3
,

Given a number, to find how many times it is the difference between the

[perpendicular ?] sides of a triangle which has a square number for the

difference between its least side and each of the two others respectively.

The number given was 1803601800, and Fermat replies that there are

243 triangles, and no more, which satisfy the conditions. He adds " The

universal method, which I will communicate to him if he asks for it, is

beautiful and noteworthy, although I doubt not that Frenicle has already

given him everything on the subject of these questions."

23. To find two triangles, , , rj and ', ', 77' (
>

77, % >
77')

such that

Suppose the two triangles formed from (x, y) and (x', /) respectively,

the sides being
= *+/, t=2xy, 17

= -/.

1 Oeuvres de Fermat, n. p. 233.
2

Ibid., p. 250.
3

Ibid., p. 247.
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Then we must have

(*-J>)
2 =2/2

-(*'-

and 2f-(x-y}* = (x'-yJ

which equations show that y =y', and that

are three squares in arithmetical progression.

Suppose that these squares are i, 25, 49 respectively ;
thus y =

5 ;

x-y=i, so that #=1 + 5; x'-y^y, so that #' = 5 + 7.

Fermat accordingly gives the rule : Find three squares in arithmetical

progression ;
then form the first triangle from (i) the sum of the sides of

the first and second squares and (2) the side of the second, and the

second triangle from (i) the sum of the sides of the second and third

squares and (2) the side of the second 1
.

In the particular case, the triangles are formed from (6, 5) and from

(12, 5) respectively; the triangles are therefore (61, 60, n) and (169, 120,

119) respectively.

For solving the problem offinding three square numbers in arithmetical

progression Fermat seems first to have given a rule which was not general,

and then in a later document to have formed the sides of the three squares

as follows :

r^-zs2
,

r* + zrs + 25*, r* + \rs + 2S
2
.

Frenicle formed them thus 2
:

the latter form agreeing with Fermat's ifp = r + s, and q = s.

Fre'nicle expresses his formula neatly by saying that we take for the

side of the middle square the hypotenuse of any primitive triangle formed

from p, q, i.e. p^ + q"*, for the side of the smallest square the difference

between the perpendicular sides of the same triangle, i.e. p^-q^zpq, and

for the side of the largest square the sum of the perpendicular sides of the

same triangle.

Suppose the primitive triangle is (28, 45, 53) formed from (7, 2).

Then the sides of the three squares in arithmetical progression are 17, 53

and 73, the squares themselves being 289, 2809, 5329. The triangles

derived from these squares and having the above property are formed from

(7> 53) and from (126, 53) respectively, and are therefore (7709, 7420,

2091) and (18685, i335 6 13067)-

1 Oeuvres de Fermat, n. p. 225.
2

Ibid., II. pp. 234-5.
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24. Tofind two right-angled triangles (, & t\) and (', ', 17') such that

Form the triangle , , r; from the numbers x, i
; then

=*2
+i, = #2

--i, 17 =2*.

Thus '= xz + i
; and, since

' -
17'
= -

17
= #2 - 2* - i, it follows that

T\
= 2X + 2.

It remains to secure that
'2 + >/

a =
(a;

2 + i)
2 + (2X + 2)

2 shall be a square,

that is,

x* + 6x* + 8x + 5
= a square

=
(*

2 +3 )

2

,say;
therefore x =

^.

Hence the triangle , ^, 17 is formed from
,

i or from 1,2; but this

solution will not do, as it gives a negative value for . Accordingly

we must find a fresh value for x, which we obtain by forming the triangle

from x + i, 2.

The sides are then

(;= + 2* -i- 5,
= *2 + 2* - 3, 17

= 4^ + 4;

thus
' = .x:

2 + 2^ + 5, T
?

/ = ^'-(jc
2

-2^-7) = 4^+ 12.

Therefore (x* + 2X -t- 5)
2 + (4^ + i2)

2 must be a square, or

#4 + 4X
3 + 30^ + i i6x + 169 = a square

^Oa + yf*-*
2

)
2

'
say

from which we obtain # = --V$n and the triangle is formed from -, 2,

or (in whole numbers) from -
979, 1092.

" We can use these numbers as if both were real and form the triangle

from 1092, 979. We thus obtain the two triangles

2150905, 2138136, 234023,

2165017, 2150905, 246792,

which satisfy the conditions of the question."

25. To find two right-angled triangles (, , 17)
and (C, , V) such that

Form the triangle , & t\
from the numbers x + i, i

;
then

= #2 + 2# + 2,
= ^+2*, 17

= 2* + 2.

Thus ? = x*+2x+ 2, and 77'
= + *7-'= 2a;-
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We must now have
'2 +

rj'

2 -
(x

2 + 2X + 2)
2 + (2#)

2 a square ;
that is,

x4 + 4X
3 + 1 2Xt + Sx + 4 - a square

-
(x* + 2X + 4)

2
, say ;

whence x= |.

Accordingly we substitute y - f for x, and we must have

y4
_ 2yS + IByZ

_ 20
y + 1 69 _ & SqUar6

This gives j = f ,
and * = f

-
1 =^

The triangle , , y is therefore formed from f, i, or from 29, 26, and

is therefore 1517, 165, 1508 ; the triangle ', ', 77'
is 1525, 1517, 156.

Or again we may proceed thus from the point where we found x = - f .

The triangle , , >; may be formed from -
J, i or from -

i, 2.

We therefore form a triangle from x i, 2 and start afresh.

The sides are

= *2 -2*+5, = x*-2x-3, 77
= 4^-4.

Thus ' = x" - 2X + 5, and ?/
= +

77
-

^' = $x - 12.

Hence (x
2 - 2X + s)

2 + (4^ - i2)
2 must be a square ;

that is,

x* - 43? + 30#
2 - n6x+ 169 = a square

= (i3-ff* + :x;2
)

2
>
sav -

This gives ^^yf, and the triangle , ^, 77
is therefore formed from

y|^, 2, or from 29, 26, as before.

The remaining problems on rational right-angled triangles in the

Inventum Novum are cases given in Part n. of that collection to illustrate

the method of the Triple-Equation due to Fermat and explained by him on

Diophantus vi. 22 as well as, at greater length, in the Inventum Novum.

An account of the method will be found in a later section of this Supple-

ment ;
but the problems applying the method to right-angled triangles

will be enunciated here.

26. Tofind a right-angled triangle , , 77 such that

By Problem 2 above find a right-angled triangle h, /, b (h being the

hypotenuse) in which h, p + b are both squares ; the first condition is thus

satisfied.
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To find
, , 77, put = hx, =px, ri

= bx.

The three remaining conditions thus give a "triple-equation" in x.

[The numbers would of course be enormous.]

27. To find a right-angled triangle. , , 77 such that

where m is any given number.

Fermat supposes m = 2.

Assume for the required triangle (3*, 4*, 5*); we have then the

triple-equation

144^+ 3* = M
144** + 4x=v* U

the solution of which gives x = ^^TF> and the triangle is

507 .676 _4A|8016* 8lTTS"> iSOl6'

28. Tofind a right-angled triangle , ^, t\ such that

Suppose w = 2.

Find a triangle (Problem 3 above) in which
,

-
17 are both squares,

say the triangle (119, 120, 169). Put 119*, 1200:, 169* for the sides of

the required triangle, and we have the "
triple-equation

"

166464;*?+

166464^+
1 66464^ + 338^ =

29. Tofind a right-angled triangle , ^, t\ such that

(f + i
?
+ )

a + C =

where m is any given number.

* The enunciation has
(
-
^T;) instead of^ -

17 ;
but (

-
Jfi;) is inconsistent with

the solution given, and I have therefore altered it so as to correspond to the solution.
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Take a right-angled triangle in which i,/ are the sides about the right

angle and are such that i - \p is a square (Problem 1 1 above).

Let q be the hypotenuse of the triangle so taken, so that q - V(/
2 + l

)>

and take as the sides of the required triangle x, px, qx ; we thus have

the triple-equation

(i +/ + ?)***+/* =

(i +/ + qf y? + mqx =

30. Tofind a right-angled triangle , , t]
such that

First find a triangle in which one of the perpendiculars is a square, and

the sum of the perpendiculars is also a square, say 40, 9, 41.

Take 403:, yx, 41x as the sides of the required triangle; and we there-

fore have the triple-equation

Sioox2 + ^ox uz

8 1oox2 + X =

SECTION IV.

OTHER PROBLEMS BY FERMAT.

31. Tofind two numbers
, t\ such that

(1) (-(?-*)}

(2) r)-(g*- rf) > are all squares.

(3), (4 ) tr,H?-W
Let ^ + i]

= i 2x, t) 2x, so that $ = , i\
= ^ 2x, and

e-rf=2X-4X*.

Thus (3), (4) are both satisfied.

The other conditions (i) and (2) give

4X
2 - 2X + =

The difference - 2X = $x . \ ; and, putting (2X + ^)
2 = 4^

2 - 2X + \ ,
we
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The required numbers are therefore J, ^5T .

Another pair of numbers satisfying the conditions will be obtained by
substituting^ + T

7
F for x in the expressions to be made squares, and so on.

32. Tofind two numbers
, 17 such that

Let the numbers be + x, % -x; therefore -TJ, as well as ?-if, is

equal to 2x, The sum f + 17
= i.

Therefore i 2X must be a square, or we have the double-equation

IH- zx

Replace x by |y +j so as to make i + zx a square ; therefore

i - 2y y* = a square

= (i-37)
2
, say,

whence y = f, and # = ^y
2 + _y

=
|.

The required numbers are therefore f, ^.

33. Tofind two numbers
, 17 jr that

(+ 9)(*+f)?=Mfe
Assume = #, 17

= 2 - #
; therefore

( + ?) (
2 + V

8

)
= 2 (z*

2 -4* + 4) = a cube

=
(2 -**), say.

This gives # = - f ; and to get a " real
"
value of x we must substitute

y \ for x in the expression to be made a cube.

Thus 4^-44^ + 125 = a cube

and j =^, so that *=>>-! =

The required numbers are therefore f|!inr,

COR. We observe :

(1) that the numerators 26793, 15799 satisfy the conditions ;

(2) that we have in fact solved the problem To divide 2 into two parts

such that twice the sum of their squares is a cube
;

(3) that we can solve in the same manner the problem To find two

numbers such that any multiple of the sum of their squares is a cube. Thus

suppose that the multiple is 5 ; we then assume x and 5
- x for the

numbers and proceed as above;
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(4) that we can also deduce the solution of the following
"
very fine

problem
"

:

To find two numbers such that their difference is equal to the difference of
their biquadrates orfourth powers.

In other words, we can solve the indeterminate equation

*-**.- ^r

For we have only to take the two numbers found above, namely 26793
and 15799, and divide by (as a common denominator) the root of the cube

formed by multiplying their sum by the sum of their squares.

This common denominator is 34540, and the two required numbers are

This latter problem is alluded to in Fermat's note to Diophantus iv. i r

in these terms :
" But whether it is possible to find two biquadrates the

difference between which is equal to the difference between their sides is a

question to be investigated by trying the device furnished by our method,

which will doubtless succeed. For let two biquadrates be sought such

that the difference of their sides is i, while the difference between the

biquadrates themselves is a cube. The sides will, in the first instance, be

-^ and |f. But, as one is negative, let the operation be repeated, in

accordance with my method, and let the first side be x--j^\ the second

side will be # + |f, and the new operation will give real numbers satisfying

the condition of the problem V

34. Tofind two numbers
, tj such that

4 + S 7
?

4 = a square,

Fermat (or De Billy) observes that it must be required that the first

biquadrate (
4

)
shall not be unity, for in that case the problem would be

too easy, since 1 + 3.1 = 4 and i + 3 . 16 = 49.

Assume = x, ti
= x-i

;
therefore

4^ -12:^ + 18^ - i zx + 3 = a square

'= (zx
z - 3* + f)

2
, say.

This gives ^=\1
-, #-i = f; and a solution in whole numbers is

i = n, T/
=

3. In fact n 4 + 3 . 3
4 = 14641 + 243= 14884 or i22 2

.

We can also take any equimultiples of (n, 3), as (22, 6) and (33, 9) ;

and the latter pairs of numbers severally satisfy the condition of the

problem.

1 It gives in fact
^

,

*

as a solution of the subsidiary problem, and from this

we can obtain the same solution of the main problem as that given above

/26T93 i5799\

\3454' 3454/
'
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SECTION V.

FERMAT'S TRIPLE-EQUATIONS.

Fermat's own description of his method of "
triple-equations," which is

contained in his note on vi. 22, is as follows :

"Where double-equations do not suffice, we must have recourse to

triple-equations, which are my discovery and lead to the solution of a

multitude of elegant problems.

If, for example, the three expressions

.v + 4, 2.r + 4, 5* + 4

have to be made squares, we have a triple-equation the solution of which

can be effected by means of a double-equation. If for x we substitute a

number which when increased by 4 gives a square, e-g.jr + 4y [Fermat says
^ +

4-r], the expressions to be made squares become

f +w + 4, 2jr + &y + 4, 5^ + 2qy + 4.

The first is already a square ;
we have therefore only to make

2y*+ Sj + 4

^y
2 + 201- + 4 J

severally squares.

That is to say, the problem is reduced to a double-equation.

This double-equation gives, it is true, only one solution : but from

this solution we can deduce another, from the second a third, and so on.

In fact, when we have obtained one value for y [say _>
=

],
we substitute

for y in the equations the binomial expression consisting ofy plus the value

found
[i.e. y + a\. In this way we can find any number of successive

solutions each derived from the preceding one.'
?

The subject is developed in the Doctrinae Analyticae Inventum Novum
of De Billy already mentioned so often.

It will be observed that the absolute term in all the three expressions

to be made squares is a square. It need not be the same square in the

original expressions ; if the absolute terms are different squares, the three

expressions can, so far as necessary, be multiplied by squares which will

make the absolute terms the same, when the method will apply.

We may put the solution generally thus. Suppose that

have to be made squares (a, b, c or some of them may be negative as well

as positive).

Put ax =f + 2py,

which makes the first expression a square (or of course we could put

ax = a*y* + zay).
H. D. 21
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Substitute (y
2 + 2py)\a for x in the second and third expressions.

Therefore ~

must both be squares ; or, if we multiply the first expression by r2 and the

second by q* (so as to make the absolute terms the same), we have to solve

the double-equation
'

-
a q- (f + 2py} + fr* - v*.

The difference = -
.j

2 + 2p .
- -

.y.

This has to be separated into two factors of the form \y, py + v, where

v must be equal to 2qr (in order that, when ^ {(A + /*)j + v} is squared and

equated to the first, or when i{(A-//,)j- v}
2
is equated to the second, of

the two expressions, the absolute terms ^V
2

may cancel each other).

A different separation into factors is possible if b[a and c\a are both

squares ;
but otherwise, as Fermat says, the method gives only one

solution in the first instance
;
the above difference must necessarily be

split into the factors

p(b^-cf\ , qr
*J-y and y

-y + 2ar.

aqr p
j

Half the sum of these factors

-" q
aqr p

f_-cfq^ r
apqr )

Squaring this and equating it to (y~ + 2py) 4- /r
2
,
we have

fi (aq-r
i + brp--cp

1

q-
\\y(
t
2 -7

\ apqr
therefore

ap
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that is,

-
zcafq'i*

-
zabfft*)

= wpft* (br*f + cff -
aft*),

or _ + cff - a?**)
J

whence *!=?-. ^-M is found.
\ a J

Exx. from the Inventum Novitm.

2* + 4
-j

yc + 4 - to be made squares.

(i) 2* + 4
-j

- to be

Here a = 2, ^ = 6,;
r= 3, / = q = r = 2

; therefore

4.2.32(6. 16 + 3. 16- 2. 16)

and

i62
(4 + 36 + 9

- 2 . 6 . 3
- 2 . 3 . 2 - 2 . 2 . 6)

16.7

23
'

I
/ ., x

I (112^ 4-II2) 56, 1120
-( r + 4,r)

= - -I ^=^-,(112-4.2^) =- .

2
V - 2\2 3

2

23. j 23^ 529

i-|
4

j-

to be

J

3* + 4
- to be made squares.

2X + Q

Here a= i, ^ = 3, ^= 2, p =
i, q 2, r=3; therefore

36
2 + 9. 81 +4 . 16 12 . 36 16 . 36 6 . 36. 9

- 4 36 = 144
-
36 . 46 + 9 . 81 + 4 . 161

~
863

'

and * =/ + 2j = (i**)
2 + 2 (|4|)

= ff|4f.

The disadvantage of the method is that it leads so soon to such very

large numbers.

Other examples from the Inventum Novum are the following, which,

like those above given, can be readily solved ab initio without using the

above general formula.

(3) To solve

i + 50:
= "or)

ic se

-}

Put x =y* + 2>-, and substituting in the second and third expressions we

have only to solve the double-equation
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The difference = 3 (f + ay)
= y (y + 2).

Equate the square of half the difference of the factors to the smaller

expression ;
thus

(y i Y = zyr + 4y + i
,

whence y = -
6, and x =y + zy = 24.

(4) Equations x + 9 = u*'

3* + 9 =

5* + 9 =
<

In this case we put x -y
1 + 6y, and we have to solve

5 (y* + 6y) + 9 = w'
2
)

'

The difference = 2 (y* + 6y)
= zy (y + 6) ;

we then have

and y = - f, so that x =y* + 6y = -^Vr-

(5) Equations i+ x-u2

If we assume x.=y* + 2y, we find y T
2
T and x = T

4
^.

There are two other problems of the same sort which are curiously

enunciated.

(6)
" To find three cubes such that, if we add their sum to numbers

proportional to the cubes respectively, we may have three squares."

What Fermat really does is to take three cubes (a
3
, ft\ c'

A

)
such that their

sum is a square (this is necessary in order to make the term independent
of x in each of the three expressions a square) and then to assume

aa
x, Px, c>x for the numbers proportional to the cubes. He takes as the

cubes i, 8, 27, the sum of which is 36. Thus we have the triple-equation

36+ x = u*
|

36 + Sx = z?
\-

.

T
>
6 + 2'lX

= W i
}

We put x =y + 1 2y in order to make the first expression a square.

Then, solving the double-equation

36+8 (y- + izy)
= v2

we obtain y = ^3* and x =y- + i2y = -f|-.

(7) "To find three different square numbers such that, if we add

to them respectively three numbers in harmonic progression, the three

resulting numbers will be squares."

Fermat first assumes three square numbers i, 4, 16 and then takes

2X, 3#, 6# as the required numbers in harmonic progression. (He observes
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that, of the three numbers in harmonic progression, the greatest must be

greater than the sum of the other two.) We thus have the triple-equation

I + 2X = li
l

1

4 + 3*=^
\,

or, if we make the absolute terms the same square,

16 + 32.* = u"~

l6+ I2X = V"*

Making the last expression a square by putting / + ^y for x, we solve

as usual and obtain y = ^- and x = \ (y* + By)
= ^^

Fermat observes that triple-equations of the form

x2 + $x = it?

that is to say, of the form

f-y? + ax = u>

fy? + bx - 1?

jZx* 4- ex - v?

can be similarly solved, because they can be reduced to the above linear

form by putting x=\\y and multiplying up by/.

Examples.

(i) To solve the triple-equation

43? + 6x = v1

^x
2 + gx ix?

If x = i/y, this is equivalent to

Putting y = l?z
2 + 22 and solving as usual, we find

-*TO7HP+8S=fftf and x = %

(2) Equations
* + x =

90:- + 20;

This is equivalent to

v + i

* + x = i? }

4^r + 3^-
= i?

|

90:- + 20; = a*
2
J

ay 4- 9 = r</'
2

We put y = z- + 2s and, solving the double-equation

e find s - ^i, .r
- f^^, so that * - |UHS-
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(3)
" To find three square numbers such that, if we add their sum to

each of their roots respectively, we obtain a square."

Choose, says Fermat, three squares such that their sum is a square and

such that the root of the greatest is greater than the sum, of the roots of the

other two (the reason for this last condition will shortly appear) ; e.g. let

the squares be 4, 36, 81, the sum of which is 121.

Let 4#
2

, 36^, Si.*2 be the three square numbers required; therefore

I2IX2 + bx^V*
= it?

The solution, arrived at as above, is x =

Fermat actually used his triple-equations for the purpose, mainly, of

extending problems in Diophantus where three numbers are found

satisfying certain conditions so as to find four numbers satisfying like

conditions. The cases which occur are in his notes to the problems
in. 15, iv. 19, 20, v. 3, 27, 28; they, are referred to in my notes on

those problems.

De Billy observes (what he says Fermat admitted he had not noticed)

that the method fails when, the absolute terms being the same square, the

coefficient of x in one of the linear expressions to be made squares is equal

to the sum of the coefficients of x in the other two. Thus suppose that

i + 2x, i + 3*, i + 5jc

have to be made squares. To make the first expression a square put

x = 2^ + 2j. The other expressions then become

i + 6y + 6y, i +' iqy + ioy-.

The difference is 4^ + %y = zy (2y + 2), and the usual method gives

(27 + i)
2 = io/

2 + ioy + i,

or 6y
2 + 6y = o,

so that y = i
,
and consequently x = 2y* + 2y = o.

It does not however follow, says De Billy, that a set of expressions so

related cannot be made squares by one value of x. Thus i + $x, i + i6x

and i + 2ix are all squares if # =
3, the squares being 16, 49, 64. He

adds ( n) that "we must observe with Fermat" that the triple-equation

2

not only cannot be solved by the above method, but cannot be solved at

all, because " there cannot be four squares in arithmeticalprogression" which

however would be the case if the above equations had a solution and we

took i for the first of the four squares.
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The subject of triple-equations has been taken up afresh in a recent

paper by P. v. Schaewen 1
. The following are the main points made.

(i) The equations ax+JP =

= it?

can be reduced to the form
i + ax = u"

i + b'x' - v'

i + c'x' = w

by substituting MX' for x, where m is the least common multiple of/'
2
, ?

2
,
r2

.

(2) The method of Fermat has the disadvantage that, with one

operation, it only gives one value for x and not by any means always the

smallest solution. From this point of view there is a better method, namely
that of finding the general solution of the first two equations, substituting the

general value of x so found in the third equation and solving the resulting

equation in a new unknown. Consider the equations

i + ax - it
1

\

i + bx = i? > .

i + ex = -up
j

Suppose i + ax = /
2
,
some square. Therefore

i+6x=i +-(/3

-i),

and, multiplying by a3
,
we have to make

abp- + a2 ab a square.

This is a square if/=i ;
and we therefore substitute q + i for/. Thus

abq- + zabq + a2 = a square

say.

Therefore (ab
-^ q = 2

(
a -

zan (m nti)

and 9 = ~>-> '

whence p=g+i- ^j^TT^i

((2amn abn2
tn?Y

and

- 4 ;// w

Substituting this value of x in the expression I'+ex, we have a biquad-

ratic expression in
m

which has to be made a square, namely

M4 -
^ctrfn + {4 (a + b) c - 2ab\ m*ri2 - ^abcmi?

1 Bibliotheca Mathematica, IX3 , 1909, pp. 289-300.
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Example. Find x such that

i x, i + 4#, i + "jx are all squares.

First find the general value of x which will make the first two ex-

pressions squares ;
this is

or, if we substitute k for 2n/m,

We have now to make i + TX a square ;
that is,

k* + 14/fc
3 + 23/

2
i4/fc + i - a square.

The first solution of this is k =
i, and by means of these values we get

the further values k =
f and k -

\^ (cf. Euler's solution of the problem of

making x2 + i and x + i simultaneously squares quoted in my note on

pp. 84, 85). The corresponding values of a- are respectively

3 120 . 120120
~

,

--
o and ---

ji- .

4 "2Q
2

421-

Fermat's method gives, as the next solution after f,
the value

(3) v. Schaewen observes that the problem of finding x such that three

different expressions of the form mx + n are all squares can always be solved

provided that we know one solution
;
in this case the absolute terms need

not be squares. I doubt however if he is right in supposing that the

possibility of solution in this case was not known to Fermat or De Billy.

I think it probable that Fermat at least was aware of the fact ; for this case

of the triple-equation is precisely parallel to that of the double-equation

2x + 5
= t?

6x + 3 = w-

given as a possible case by Fermat in his note on Sachet's conditions for

the possibility of solving double-equations (cf. note on p. 287 above).

Fermat says that the square to which 2x + $ should be made equal is 16

and that to which 6x + 3 should be made equal is 36 (corresponding to

x = 5^), adding that an infinite number of other solutions can be found.

(4) Lastly, v. Schaewen investigates the conditions under which the

equations

i + ax = 2
,

i + bx = v2
,

i + (a + b} x = w~,

which cannot be solved by Fermat's method, are nevertheless capable of

solution, and shows how to solve them when they have a solution other

than x = o.
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SECTION VI.

SOME SOLUTIONS BY EULER.

PROBLEM i. To solve getierally the indeterminate equation*

Vieta solved this equation on the assumption that two of the four

numbers are taken as known.

[I noted on p. 102 Euler's remark that, if 3
3 + 4

3
is turned into the

difference between two cubes by the direct use of Vieta's second formula,

the formula gives 3
3 + 4

3 = (A^)
3 - (f-f but not 3

s + 4
3 - 63 -

5'.
I ought

however to have observed- that the latter can be obtained from Vieta's first

formula if we multiply throughout by a3 + ^. The formula then becomes

a3 (a
3 + 6*f

= 6* (<? + P)
3 + c? (a

3 - zPf + P (20
3 -

*)

3
.

Putting a=2, 6=1, we have i83
=9

3+ 123+ 15
3
,
which gives (after division

by 3
3
) 63 = 3

3 + 4
3 + 5

3
. The next solution, obtained by putting a = 3, b= i,

is 84* = 283 + 53
3 + 75

3
;

if a - 3, b - 2, we have ios
3 = 33* + yo

3 + Q2
3

;
and

so on. Similarly Vieta's second formula gives

a3 (a
3 + 2^)

3 - a3
(a

3 - ^)
3 + ^ (a

3 - ^)
3 + P (20* + Pf,

and we obtain other integral solutions ;
thus

if a = 2, b = i, we have 2o3 = 7
3 + i4

3 + 1 7
:!

,

if a = 3, b=\, we have &f = 26' + $$
3 + 78*;

and so on.]

(i) A more general solution can be obtained by treating only one of

the three numbers x, y, z as known.

To solve cf + x3 +y = v1
,

put x =pu + r, y = qu r;

therefore

say;

and we obtain, after dividing out by (/ + q) u*,

1 N. Comment. Acad. Petrof. 1756-57, Vol. vr. (1761), pp. IJ5 sqq-= Commtnt.

arithm. I. pp. 193-206. Cf. pp. 101-2 above.

- See Nesselmanivs "Anmerkungen zu Diophant" in the Zcitsfhrift fiir Math. u.

Physik, XXXVII. (1892), Hist. litt. Abt. p. 123.
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-
?")

- ^ (/ +
?)'"'

_ 30V4

(/ + ?)
-

where c, r and the ratio / : q may be given any values we please.

(2) A more general solution still is obtained if we regard none of the

first three cubes as known.

Suppose that, in the equation

x* +y* 4- z* = v";

x = mt + pu, y=nt + qu, z = - nt + ru.

Therefore

o? +y
3 + 23 =

Put now Z

and we have, after division by u",

3/ {w/ + (f -r>)} + u (f

n* (<?
+ r)}

3

,m6

whence, neglecting a common factor which may be chosen arbitrarily, we

have
/ - m6

(f + g
3 + r3)- \m>p + j? (q + r}f,

u = yn* {nfp + n 2

(y + r}Y
- 3^' {mp^ + n (f - r1

)},

or, if we divide by the factor q + r,

t = ;
6

(q- -qr + r*}- yn*ri
i

p'
i

^tr^n^p (q + r)
- n* (q + r)

3
,

u = - 3men (q r) + 6m
5n2

p + yri?n* (q + /-),

so that x, y, z and v can be written down.

The solution is, however, still not general.

(3) General solution.

To find generally all the sets of three cubes the sum of which is a cube.

Suppose A s+& + C3 = D\ or A 3 + 3 =Dl -
C'\

and assume A-p +y, B=p -
q, C=r~s, D = r + s.

Then A :s + 3 = 2pA + 6pq\ & - Cs = 2j
8 + 6r-s,

so that
'

+
'
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This equation cannot subsist unless f + $#*, s
2 +^ have a common

divisor. Now it is known that numbers of this form have no divisors

except such as are of the same form.

To find them, we introduce six new letters to take the place of

/, </, r, s, thus : let

p = qx + $by, s = yy ~ dx
t

whence f- + tf =
(
rf
2 + 3

2

) (* + 3^), s
2 + 3^ = (d- +

and our equation, divided by x2 + 3^-, becomes

(ax + 3ty) (
a + 3^) = (yy- dx) (d* + y*) ;

so that
* -

-
3* <* +

y. a +3
and we may put *=- yib (a- + yV) + yic (d- + y*),

y - na (a* + 3^) + nd (d- + 3^).

Hence the values of/, (/, r, s are found to be

g = (Zbc
-
ad] (<i* + y*)

- n (<? + 3^)
2
,

r-n (d* + 3^)
2 -

(36f
-
ad) (a

2 + 3^),

s = 3 (or + ^) (a
2 + 3^),

and ^ = n (^ac + ybc-ad+ 3A/) (^
2 + 3^)

- n (a
2 +

-ad+
D= n (d* + 3^)

2 + n (ytc
-

These values satisfy the equation

A s +& + C* = Z^,

and, since no restriction has been introduced, the solution is capable of

giving all the sets of three cubes which have a cube for their sum.

More special forms for A, , C, D can of course be obtained by putting

zero for one of the letters a, b, r, d, and still more special forms by co'm-

bining with the assumption a = o or l> = o the assumption d=c, or com-

bining with the assumption c= o or d - o the assumption b = a.

Two cases are worth noting.

First, suppose b= o, d = c, and we have

A = Svaf-na*, B = i6nat* + na4

,
C= i6nc* - 2>ia*c, D = i

If further we write 2a for a and #/i6 for
,
we have

A = na(S-a
3

),
8 = na

(
2 <? + a3

), C=nc(<?-c?\ D = nc

which is equivalent to Vieta's solution of his second problem.

Secondly, suppose d = o, b = a, and we have -

A -i Snat? 1 6//a
4

,
B = 16a4

,
C = 9^ - _24o

t

V, D *=

or, if we write ia for a,

A = gnac
3 - a4

,
j9 = a4

, C" = gnc* yid*c> D =
gt
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which, if n - a = c i, gives the simplest solution of all

4 = 8, JB=i, C = 6, Z>= 9 , and i
a + 6s + 88 = 9

8
.

In proceeding to other solutions we have to remember that, while

A, , C, D must be integral, they should all be prime to one another; for

those solutions in which A, Jt, C, D have a common factor are not new

solutions in addition to that from which the common factor is eliminated.

Thus, while giving any values, positive or negative, to the numbers

a, , c, d in the formulae

x = yic (d* + 30 ~ yd (a* + 3^),

y = nd(d- + $r) + na (a- + 3^'),

we have to choose for n such a fraction as will make x, y prime to one

another. We then form

p = ax + $by, q=bx-ay> r - dy + ex, s = yy - dx ;

and, after again eliminating any common factor, we put

and we shall have A^ +^+C3 ^ I?.

(The cases in which one of the three cubes A"', J?\ C3
is negative will

give the solutions of the equation Xs
+y* = z

z + v\)

While any values of a, l>, c, d may be taken, it is necessary, if we want

a solution in which A, B, C, D will be small numbers, to choose , l>, c, d

so that cr + 3^
2
,
d* + 3^ may have a common factor. Euler accordingly

sets out a table of all numbers of the form mz + yr less than 1000 (giving

m values from i to 31 and // values from i to 18), and then chooses out

cases in which a2 + 3<5
2
,
d2 + y~ have a tolerably large common factor.

Now, assuming that a2 + 3^
2 = mk,

we have (supposing further that ac+bd=f, $bc
- ad

'

=
g)

In these formulae/, g may be either positive or negative, the signs of

a, l>, c, d being ambiguous ; and we may put

either
A(" + A

1 or
/=(^-^)

}'er

^=(3^-^)l. g=(& + ad}}-

But, if/ changes sign while g remains unaltered, we get numbers of the

same form, only in different order ; therefore we may confine ourselves to

the positive sign in/
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Example i. Let

333

19, so that a = 4, b=^,

eP + 3^ = 76. so that </= i
j

or </= 7 1 or //= 8 1

Then ///= i, = 4, k= 19.

The following values for f, g result, viz.

I. /=2F, II. /=I9, III. /=I 9 ,

^=11, ^=19, ^=19,
IV. /=5, V. /=i6, VL /=o,

^=37, ^-26, ^=38,
while, since m i,

=
4, >= 19,

The values (VI) /= o, ^= 38 are excluded because, if/= o, A = - B
and C=D.

The values (I) give

that is,

= 315

C= 241 C*=230

The values (II) and (III) give, after division by 19,

A = 11 4, that is, i

/* = 1501-^ =
5 A=^

^=13 + 4 B= 9 = 3 =17

(7=13 + 1 C=i2 C = 4

The values (IV) give

A= 411148, that is,

= 79+148

^ = 319+ 37

Lastly, the values (V) give

A = 173 104, that is,

2? = 21 1 + 104

(7=256+ 26

26

D=2Q

A=i&qoTA= 63 i A = -ioj

B=-6<) #=-23 B= 227

c= 252 c= 84
I

^^326
Z?= 282 Z>= 94 |

D= 356

=230

^4 = 69 or A = 23

,#=315 #=105
^=282 C= 94

Z>=*78 Z>=i26
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Thus from the one assumption for a- + 3^, d- + ^c we have the

following solutions :

22-j
s + 23o

3 + 277
3 = 356

3
1 io7

3 + 356
3 = 227

3 + 326
3

io7
3 + 230 + 277

3 = 326
3

I 23
3 + 94

s = 63*+ 84*
.,

o , ,., !

23 + 94+105126

3
3 + 4

3 + 5
S = 6s

Example 2. Assuming

a2 + 3^
2 = 28, so that a -

d2 + y2 = %4, so that d=$\ or ^=6) or d=q\

we have k= 28, m=- 1, n = 3, and the following solutions will be obtained :

I
3 + I2 3 = Q

3 + I03

PROBLEM 2. Tofind three numbers x, y, z such that

x +y, x + z, y + z,

xy, x- s, y-z,
are all squares,

First solution
J
.

Assume that x y =f, x-z =
<f, y-z = r*

;

thereforey- x-pz
,

z = x-$2
, and <7

2 =/2 + r!

.

The first three formulae now become

x +y = 2X p^, x + z = 2X q*, y + z= 2X p"* q*.

Suppose that 2x -p*-<f = t
2

,
so that 2x = f1 + p* + q* ;

therefore we

have to make /
2 + ^ and /

2

+/2

squares, while in addition q* =#
2 + r-.

Let q = az + l>\ p^a*-P, r = tab
;

then t- + (rt

2 + <^)
2 - /

2 + a4 + b* + zdW
|

and t* + (rt
2 -

^)
2 = f2 + a4 + b* - 2aW }

must be made squares.

Comparing now /
a + a4 + b* with r + d- and 2

2
//

2 with 2cd, let us

suppose cd=c?P=pg*&ff, c=fY, d=tf&, a*=fW, P^g*}? (or a=/fi,

b = gfc) ;
then the assumption /

2 + ^4 + fr = c
z + </

2
will assume the form

Algebra, Part II. Art. 235.
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Hence the problem is reduced to finding the differences of two pairs of

fourth powers, namely/4 -/ 4 and g* -h*t the product of which is a square.

For this purpose Euler sets out a table of values of m4 - n* corre-

sponding to different values of m, n, with a view of selecting pairs of

values of m* - 4 the products of which are squares.

One solution is obtained from/
2 =

9, t? = 4, g
2 = 81, h* = 49, whence

/ = (/
4 - 4

) (^ - //
4

)
=

5 - i3 64 5 i3 = (52o)
2 = 270400.

Therefore

a =fh= 21, bgk\^^p = (f b'
i = 117, $ = a2 + fi* = 765, r = 2fl/ = 756 :

therefore 2.r = /
2

-h/
2 + </'

= 8693i4, or jc = 434657]

y = x-f?= 420968 V.

s = x -f = -i 5o56S\

The last number z may be taken positively; the difference then becomes

the sum and the sum becomes the difference ; therefore

x= 434657, *+y= 855625 = (925)
2

, x-y= 13689 = (i 1 7)
2
,

y = 420968, x + z = 585225 =
(765)2, x - z = 284089 = (533)

2
,

2=150568, J + z=57 1536 = (75 6 )

2
> y- 2 = 270400 =

(520)'-.

We might also have taken/
2 =

9, #* = 4, ^
2 = 121, -

2 = 4, which would

equally have given a solution.
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Second solution^.

This later solution (1780) of Euler's is worth giving on account of the

variety of the artifices used.

We can make x +y and x -y squares by putting x =/2 + g*, y =
2/y.

Similarly x + z, x-z will be squares if x = r- + s
2

,
z = 2rs.

Therefore four conditions will be satisfied if only pl + f = r* + s'
2

.

Now
[cf. Diophantus in. 19 and pp. 105-6 above] if we put

x =
(a

2 + P) (c* + d*\

x can be made the sum of two squares in two ways ;
in fact

/ = ac + bd, r = ad + be,

q ad be, s ac bd,

and

y 2pq = 2 (a?cd + abd^ abc* b*cd), z = zrs = 2 (cPcd + abc* - abd* Ircd],

so that y + z = ^cd (a-
-

//), y-z* $ab (d?
-

<*).

These latter expressions have to be made squares.

First make their product y
1 - z

2 a square ;
this means that

ab(a*-l?) . cd(d* -c*) must be made a square.

To effect this, let us assume that cd(d'
2

c-}
= ri*ab (a*

-
b*} ;

we may

further, since the question depends on the relations between the pairs of

letters a, b and c, d, suppose that d^a.

We have then c (a
2 - r

2
)
= r?b (a*

-
//'),

whence a2 =
?-,
-

,
which fraction has accordingly to be made a square.

ri*b-c
2 A3 _ .-3

Suppose that a~b-cy
so that ^Y_

- =1? 2bc + 1
3

,
and we have

o = -(2
2

+i)-V+(
2 + 2)<V;

b n*+2
therefore

- =^^ -

Put b = ri
l + 2 and c - zri- + i

; therefore a = \n1 -d.

As we have now made the product of the expressions ab (d~
- c1

)
and

cd (a
1 -

&*) a square, it only remains to make either of them singly a square,

say ab (d*
-

<?}.

But ab (d-
-

c*)
= ab (d

-
c) (d + c)

=
3/z

2
(tr

- i ) (n
9- + 2)%

We have therefore only to make 3 (#
2 -

i) a square, which is easy, since

n 3 - i has factors
;

for we have only to put

2 - 2

which gives 3 (
- i

) -g (
+ i

),
or n = 7-5^ .

o O6 J
1 Mtmoires de FAcadtmie Imptriale des Sciences de St Petersbourg, 1813-14, vi. (181 8),

pp. 54 sqq.= Commentationes arithmeticae, II. pp. 392-5.
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[Euler had previously tried the supposition a = b + c, which would

require 3(#
2
+i) to be made a square, which is impossible.]

All the conditions are now satisfied, and we have to find a, b, c, d etc.

n terms

As the whole solution depends on the ratios of a, b, c, d, we can

multiply throughout by the common denominator, divide by 3, and put

whence p = - 8/V (/< + 9^), r=/

[Euler took a to be 2
i instead of i n- and consequently obtained

positive signs for the values of/ and s
;
he also has f = (f

4 -
9g*)~, which

appears to be a slip.]

Assuming therefore any values for/ g in the first instance, we first find

values for a, b, c, d, then values for pt q, r, s, and lastly values for x, y, z.

It is to be observed that it is a matter of indifference whether we get negative

values or not
;
for positive values can be substituted without danger.

Euler gives four examples.

If/= i, g= i, we find that x, y have equal values; this solution there-

fore does not serve our purpose.

The same is the case if/= 3, g- i.

Suppose then that/= 2, g- i; therefore a = //=- 16, b- 17, c= 33; and

(taking positive signs) we have

/ = 8oo, ^ = 305, r=8i7, ^ = 256,

and # = 733025, ^ = 488000, .2 = 418304,

If/= i, g- 2, we have a = d= 16, b- 137, c- 153, and

^ = 4640, ^=20705, r= 21217, ^=256,

leading to large numbers for x, yt
z.

Euler adds that, if x, y, z satisfy the conditions of the problem, another

solution is furnished by X, Y, Z where

H. D.
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PROBLEM 3. To find three squares such that the difference of any pair

is a square, or tofind x, y, z such that

x2
JF

2
,
x2 z2

, y
2

z2 are all squares.

Any solution of the preceding problem will satisfy this, hut the numbers

would be large and we can get smaller solutions 1
.

x2
y
2

Dividing by z~, we have to find three squares, 5-, 3 and i, such that

are all squares.

The last two conditions are satisfied if we put

x l>
2 +i , y <?

2 +i
~z f^\

and
* j^I J

and we have only to make p ~
"p

=
/\L 4 "" rt 4 a S(luare.

Now

Therefore (/V
J -

i) (/-/
2

) or (/
s
^
a

-i) fC -
i")

has to be made

square.

(i) The latter expression is a square if

And /^ .

^
= ^

2
,
a square ; therefore

.
~ orfg (f* + g*) . hk (A

2 + &} must be a square.

, g = a-b, h = c+d, k = c-d, the expression becomes

4 (<z
4 - b4

} (<?
-

d*), which must be a square.

From the Table to the last problem we may take the values

a2 = 9 ,
F =

4, r = 8t, d* = 49,

which make the expression a square.

Then/= 5, g= i, /&= 16, k=2,pq = ^-, q\p = ^ =
|f, so that ^ =^,

^ = -1
/-, and therefore / =

4-

y-
9
- - --

,

-

,
---

z /2 -i 9 2 ^-i 153

1

Algebra, Part II., Arts. 236, 237.

. . ..
is the solution.
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To obtain whole numbers, we put 2=153 an <3 then ^ = -697 and

7=185.

Thus * =
4858091

and s-y = 45 1584 = (6 72)',

y= 342251 f-z
z-= 23409] .r

! -z

(2) Without using the Table, we may make (/V
2 - J ) ( nj

~ J
)
a square

in another way.

Put qlp = m or q = w/>, and (#z
2
/

4 -
i) (nf

-
i) has to be made a square.

This is a square when / = i
;
substitute therefore i + s for p and we

have

(w
2 -

i) (m-
- i + 4n?s + 6wV + 4?n

z
s
3 + m2*4

).

Dividing out by (w
2
-i)

2
and, for brevity, putting a for /

2

/(w
2

i),

we have
i + 4as + 6as2 + 4i3 + as*,

which has to be made a square.

Equating this to (i +fs+gs*Y, let us determine/,^ so that the first

three terms disappear ;

therefore 2/= 40, or /= 20,

and 6a = zg+f2 or g = i
(6a -T

2
)
= 30

- 2<z
2
.

Lastly, the equation gives 40 + a.r= ^fg + g^s, so that

4a ~ 2fg _ 40-120*+ So3 4 - 1 20. + Sa" _ 4 (za- i)

4a
3

-

Now m in the expression for a may have any value.

Ex. i. Let m =
2, so that a = | ;

therefore s = 4 .
=
~~^T

/ = ~^7' ^ =
~2~3

* 949 y _ 6005
whence

z
=
^' -z~w'

Ex.2. Let w = |, so that a = f;

13-5 26
^

249 747
therefore s = 4

-
, ^= -

77 ' ^--^1'

whence */a, j/z are determined.

Euler considers also the particular case in which a = m*/(m*-i) is a

square, P say.

The expression i + 4^-r + 60V + 4<*V + ^J4
is then equated to

(i-f 2^ + Ar2
)

2
,

I-2b-2P , . 1-2?
and we obtain s= ^

- and /= ^ .

222
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Ex. a is a square if m =
|, and in that case b = f. Therefore p=-^

q
-

nip = ^, and accordingly

z 145

PROBLEM 4. To find three square numbers such that the sum of each

pair is also a square^ i.e. tofind numbers x,y, z such that

X? +/, X* + Z
2
, / + Z

2

are all squares*.

Dividing by z
2
,
we have to make

x* y* x2

y-

*
+

;?' ^ + I
'i*

+I

all squares.

The second and third are made squares by putting

z 2p z zq

and it only remains to make

This can hardly be solved generally, and accordingly we resort to

particular artifices.

i. Let us make the expression divisible by (/ + i)
2
,
which is easily

done by supposing/ + i =^ i, or g=p+ 2, so that </+ i becomes/ + 3.

Thus (/ + 2)
2

(p
-

1)
2
+/

2

(p + 3)
2
,
or 2/

4 + S/
3 + 6f - A + 4, must be a

square.

Suppose 2/
4 + 8/ + 6/

2 - ^p + 4 = (^/
2 +^ + 2)

2
,

and let us choose/, g such that the terms in p, /
2 vanish ; therefore/-

- i
,

and 4-+i=6, or g=%.

We now have 2p + 8 = g*p + 2^-
_ 25 J. 5

"'Tvf-y*
so that / = - 24, and ^ = - 2 2, whence

*=^1 I = _S75 j = r~ I
= 483

z 2/ 48
'

z 2^ 44
'

Making 0=16.3. 1 1, the least common multiple of 48 and 44, we have

the solution

x= ii. 23. 25 = 6325, y=i2.2i .23 = 5796, 2 = 3. ii . 16 = 528,

and

/+z2 =i2 2

(483
2 + 44

2

)=i2
2

.

1

Algebra, Part II., Art. 238.
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2, 3. Euler obtains fresh solutions by assuming, first, that

?-i = 2 (/+ i),

and, secondly, that q - i = (p - i).

4. Lastly, he makes our expression divisible by both (/ f i)
2 and

(p-if at the same time.

For this purpose he takes

whence ? + 1

Substituting in the formula ? (f - if +f (<?
- if the value of q in

terms of/, / and then dividing by (/
2 -

i)
2
, we have the expression

and we have to make (// + i)
2
(/ + /)

2
+/> (/

2 -
i)

2 a square,

or /y + 2t (/
2 + i)/

3 + {2/
2 + (/

2 + i)
2 + (/

2 -
i)

2

}/
2 + 2/(/

2 + i)p + /*

must be a square.

We now equate this to {tjr + (t- + i)p - /}
2
,

whence we have

{
2/

2 + (/
2 + i)

2 + ((*- i)
2
}/ + 2/(/

2 + i)
=

{(/
2 + i)

2 - 2/2

}/
- at (t- + i),

which gives {4** + (t-
-

i)
2
}/ + 4/ (/

2 + i
)
- o,

and P =->
therefore //+ i = -

, / + /=

and

where t can be chosen arbitrarily.

Ex. Let /= 2 ; then/ = -f, ^ = - -^ and

x =f~*= 39 ^ = g'" I = "_7
.

z 2/ 80
'

z zq 44
*

Putting 2 = 4.4.5.11, the least common multiple of 80 and 44,

we have

# = -3. ii . 13 =- 429

^ = -4. 5. 9. 13 = -2340,

z = 4.4.5.11= 880,
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and *2 +/=32
. i3

2

(121 + 3600) = 3
2

. if. 6i 2
,

^ + z
2 = ii 2

(1521 +6400) = n 2

.89
2
,

J
2 + Z

2 = 202

(13689+ 1936) =202

.I25
2
.

PROBLEM 5. (Extension of Dioph. iv. 20 to five numbers.)

To findfive numbers such that the product of every pair increased by unity

becomes a square^.

Euler had already shown (see pp. 181, 182 above) that, if mn+ i = /
2
,

then the following four numbers which we will call a, b, c, d have the

property, viz.

a = m, b = n, c-m + n + 2l, d = $l(l + m) (l+n).

If now z is the fifth required number, the four expressions

i + az, i + bz, i +cz, i + dz

must all be squares.

If, says Euler, we had to satisfy these conditions singly, the difficulties

would be insuperable. But here too it happens, as in the former case,

that, if we make the product of the four expressions a square, the

expressions are all severally squares.

Let the product be i +pz + qz* + rz* + sz*,

where accordingly

p = a + b + c + d, = ab + ac + ad + be + bd + cd,

r abc + abd + acd+ bed, s = abed.

Suppose now that

i +pz + ?z* + rzs + sz* = {i + \pz + (\g- i/
2

) z"}
2

;

therefore, since the absolute term and the terms in z, z
1
vanish, we have

whence

Now it will be found (see the proof lower down) that

If.-V i(+*)'i
the denominator of the fraction will therefore be ^ (s i)

2

;
that is, the said

denominator fortunately turns out to be a square ;
if it were not so, the

single expressions i + az, i + bz, i + cz, \+dz could not have been made

squares.

As it is however, substituting for \q -
\p* its value in the numerator

and denominator of the fraction for z, we have

1 Commentationes arithnteticae, n. pp. 50-52.
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and all the conditions will be fulfilled, that is, all the expressions

ab + i, af+i, ad+i, h+i, bd + i,

cd+i, az+i, bz+i, cz + i, dz + i

will be squares.

Lemma. To prove the fact (assumed above) that

k-J^=-H*+i).
For brevity, put m + n + /=/, / (/ + /) (/ + )

=
,
so that k =fl* + Imn ;

and, since a = m, b = n, c=f+ /, d=^k, we have a + b + c- 2/, and therefore

/=2/+ 4

Again, since q = (a + b + c) d + (a + H) c + at>,

q = 8/ + (m + nY+ 2/ (m + n) + mn ;

and, since mn + i = /, the latter expression becomes

^ = 8/^+/
2 -i.

Moreover, s - abed - ^mnk (f+ /) ;

therefore i + q + s = %fk +/
2 + $mtik (/+ /),

and we have to see whether the right-hand expression is equal to \p~*

Now i/'=/
2
+4//& + 4/&

2
.

Assume then, as a hypothesis, that

*fk +f2

or, if we divide throughout by 4^,

f+ mn (f+l)=k f/
2 + Imn, from above

;

that is, f+fmn =ff\

which is of course true, since mn + t =-- A

Consequently it is proved that

,
or -) = - J +0

Ex. i. Assume i = i, n =
3, so that 1=2; therefore

=i, ^ = 3, f = 8, ^=120,

whence / = i3 2 > ?= J 47S ^=4224, ^ = 2880,

and we deduce that

_ 4. 42 24 + 264^881 __
777480"

2
" '

8288641

The conditions are satisfied, for

ab + i = 2
2
,

<:+ i = 3
2
,



344 SUPPLEMENT

Ex. 2. To get smaller numbers (since we must put up with fractions)

let us put m = ^, n =f, so that /=f ;
therefore

=
.*,

=
f, <r=6, //=48,

whence / = S7 ? = 45 IT ^=93 II> J = 36o >

_ 4.934 + 114.361 _ 44880

359
2

~
128881'

PROBLEM 6. Euler has a general solution of the problem of Dioph. in.

15, viz.

Tofind three numbers x, y, z such that

xy + x +y, xz + x -f 0, yz +y + z

are all squares*.

(i) Put x + i = A, y + i = B, z + i = C, so that AB -
i, AC-\ and

BC- i have to be made squares.

Let AB=p*+i, AC=f+i, BC = r*+i;

therefore ABC= J{(p + i) (f + i)(r* + i)}.

To make this expression rational, let us regard /, q as given and put

(/
2 + i) (q* + i)

= m* + n?, so that m-pgi y n=p~+q\ therefore

ABC= J{(m* +
a

) (r* + i)}
= J{(mr + nf + (nr

-
mf\.

Put the latter root equal to mr + n + t (nr m) ; therefore

nr-m- zmrt + znt + nrf mP

(m* + 2

) (f
2 + i

)

2

Therefore r2
,--- -TO> ~r ~--

\n (t
2 - i

)
+ 2tnt\* n (/

2 - i )
+ 2 //

'

thus, since C=t3 + i, we have

(/
2 -

i) + zw/
^*

t*+i
'

and, since w2 + n- = (p* + i) (^
2 + i),

(/
2

+i)(/
2

+i)
'

n(f*
where w =/^ + i, =/ + ^.

This solution is very general, inasmuch as we may choose /, q as we

please, thus equating AB i, AC-i to any given squares; and, as /

can be chosen arbitrarily, we have an infinite number of square values for

SC-i.

(2) Euler adds two methods of obtaining solutions in integers, the

second of which is interesting.

1 " Considerationes circa analysin Diophanteam," Commentationes arithmeticae, n. p. 577.
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Take two fractions-; and -so related that ad-bc = +i; and form a
o a

third fraction ^^> which is similarly related to either of the former

fractions.

Then the following three numbers will satisfy the conditions :

For, since ad-bc = i,

(Cf. Dioph. in. 19.)

Simple solutions are seen thus :

and so on.

(3) If two of the numbers A, B are given such that AB-\ =/*, we

can find an infinite number of values for a third, C, which with A
t
B

will satisfy the conditions.

For, since AC i and BC - i have to be squares, take their product

ABC* - (A + B) C+ i and equate it to (mC+ i)
2

;
we have then

A + B + 2m (A + mf (B + m)*C= AB-m" '

Therefore we have only to make AB-m* a square; that is,

jp + i - m* - a square = ri* say, so that m2 + n* =/2 + i.

Take now two fractions a and a such that 2 + a2 = i, and let m =
aj> + o,

// = op - a ;
then

-<

where a, a are determined by giving any values whatever to / g in the

expressions
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PROBLEM 7. To find four numbers such that the product of any pair

plus the sum of that pair gives a square; or, in other words, to find four
numbers A, B, C, D such that the product of any pair diminished by i is a

square, that is, such that

AB-i, AC- i, AD- i, BC-i, BD-i, CD - i

are all squares
1
. (Cf. Diophantus iv. 20.)

Let us regard two of the numbers A, B as given, being such that

AB - i =f, or AB=p* + i.

Let a, a be such fractions that a2 + a-= i, and put

Similarly let P + ft?
=

i, and put for the fourth number

A+B + 2(ty+ft)

($p-b?
Thus five conditions are satisfied, namely, that

AB-i, AC -i, BC-i, AD -i, BD - i are all squares.

The sixth condition, that CD - i shall be a square, gives

(A + B)
2 + 2 (A + B} {(a + b)p + a + ft} + 4 (ap + a) (bp + ft)

-
(ap

-
a)

2

(ftp
-

b)*
= a square,

where AB has at the same time to be equal to/
2 + i.

Regarding a, a, b, ft and / as given, we have

p*+ i A*+p*+ iA + B = A +^ =--^
-

'A A
and the expression to be made a square becomes the following expression

in powers of A,

+ 4A? (ap + a) (bp + ft) + 2A (/
2 + i) (a + ft)

Equate this to the square of

A* + A (a + b)p- (f + i)

and we have

A* {(a + )
2

/2 + 2 (a + ti) (a + ft)/> +(a + ftY- 4 (/> + i)

whence A is found.

Euler goes on to some particular cases, of which the following may
be given.

1 Commentationes arithmeticae, n. pp. 579582.



SOLUTIONS BY EULER. PROBLEMS 7, 8 347

Suppose b = - a and /3
= - a

; we then have

_ A + B + 2 (at + a)

-of
and the expression above in A which had to be made a square becomes

^ 4 +2^ 2

(/
2

+l) + (/
2

+l)
2

- 4A 2

(ap + a)
2

- A n-

This can be put in the form

by virtue of the relation a2 + a2 = i.

Our expression is clearly a square if 4 (ap
- of =

o, or ap-a =
2,

that is, / =
(2 + a)/a, and

(2 + a) a 2a+'i
ap + a = -- + a =-

,

a a
and in that case

A+J3+2(2a+i)/a a(A + )- =-
4 4a

where A can be chosen quite arbitrarily.

Putting =(/
2 - 2

)/(/
2 + /)> a = zfgKf* + g*), we obtain the following

as a solution, where m, n can be any integers whatever.

.

Zmnfg Smng

Ex. Suppose /= i, g=2, m =
5, n = 6;

therefore ^ =
||, = ft, C=|||, />-/

and AB-i=r'

PROBLEM 8. To find four nutnbers such that the product of any pair

added to a given number n gives a square
1
.

(i) A particular solution is found in this way. Let A, B, C, D be

the required numbers, and, since AB + n has to be a square, put

A = na2
-P, B=ncz

-d*,

so that AB=(nac-bdf-n(ad-bcf. [Cf. the Indian formula above,

p. 282.]

1 Commentationes arithmetical, u. pp. 581-3.
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The condition that AB + n is a square is therefore fulfilled, provided

that ad-bc = \: therefore we have to take fractions T ,

- such that
o a

ad- bc= i
; and, when this is done, the fractions -.

, and T 7
will have

o + a bd
the same property in relation to either of the former fractions.

We accordingly put

C=n(a + cf -(b + d)
2
,
D=n (a-cf - (b-d)

2
.

Thus five conditions are satisfied, and it only remains to make CD + n

a square ;
that is,

2n (ad - bcf \ = a square.

or, since (ad- bcf = i,

n2
(a

2 - c
2

}
2 - n

{
2 (ab cd}

2 + i
}
+ (b

2 - d2

}

2 = a square.

(2) We obtain a general solution by the same method as that applied

above (p. 345) in the problem of making AB i, BC'

i, etc. squares.

Put AB=p2 -n; then, to make AC+n, BC+n both squares, take the

product of these expressions and equate it to (n + Cx)
2

;
therefore

n2 + n (A + B} C + ABC2 = n2 + 2nCx + C2x2
,

whence C=
2 -j-=-

-
, and AC+ n =

^
.

*
,

so that (x
2 - AB]\n must be a square.

Let then y? - AB = x2 -p2 + n = ny
2
,
or x2 -

ny
2 =p

2 - n.

Similarly let us put v2 - nz2
=/

2 -
n, so as to get

A + B-2V

and it remains to make CD + n a square,

that is, (A + B}
2 - 2 (* + v) (A + B) + ny

2
z
2 + $xv

must be a square.

But, since B = * and A + B- ^ ,
the expression becomes

(after multiplication by A2
)

A4 - 2A* (x + v) + 2A 2

(p
2 -

n}
- 2A (p

2

-n)(x + v) + (p
2 -

n)
2
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which must be a square = {A
2 - A (x + v)

-
(p

z -
n)}

2

say ; therefore

A 2

{(x + vf - 4 (f -
n}
-

ny-z*
-
4x0} + ^A (x + v) (/

2 -
)
=

o,

so that

A=-

=
nfz

2 - 2n (y
2 + z2

)
+ (v + xf

'

(3) A particular solution is obtained by assuming that v = -x, so that

y, and

while AB=f-n = x*- nf.

For then we have to make

A4 + A*{2(?
z

-n) + ny
t - 4^} + (/>

_
) a square ;

that is, (A
2 -f + rif + nA*f (y*

-
4)

= a square.

This is satisfied if we put_y = 2, so that /2 = .r
2 - 3.

Suppose p = x-t, and we have

3
- t* \ni? - /

a
-inu- + t-- and p =

, or ;> =- and x = *-
2t 2t 2tU 2tu

. (nu2 - 1
2
) (onu* - 1

2
)and hence AB = ^---^E-^

4/
2w2

We may therefore put

*
--

2gtu 2/tU

,n_

Bfetu S/gtu

It will be seen that in this solution C+ D = | (A + B}.

PROBLEM 9. To find four numbers such that the product of any pair
added to the sum of all gives a square

1
.

First find four numbers A, B, C, D such that the product of any pair

increased by a number n gives a square (Problem 8).

Take as the numbers sought mA, mB, mC, mD, and, since m*(AB + //)

is a square or nPAB + nfn is a square, we have only to make m2u equal to

the sum of the four numbers or m(A +B + C + Z)), whence

A + B+C+Dm = .

n

1 Commentationes artthweticae, II. pp. 583-5.
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But, since in the other problem C + Z>-^(A + ^\ this gives

2H

where n as well as/, g, t and u can be chosen as we please.

Since n may be chosen arbitrarily, take /
2 = #2 -

3;;, as in the last

problem, so that n-\(af-f) t
and AB =p* - n = ^ (^f

-
x?).

Accordingly we may put

A _f( 2p + X) R _g(2j-x).
S3.-- -

y
JJ ~-

)

therefore j+s.'W

and hence c,'C^

and

therefore m = (A +X+C+ D}\n =

Now two of the numbers, A, ,
can be chosen arbitrarily, and

herefore

sothat

-Bj* A+B
anu o j

- *' =-~~

while

If, in order to get rid of fractions, we put A = $afg, B =
$bfg, we have

Ex. Let/= 2, g= i
; therefore

A = 8a, ^-8^, C=6b-a, D = $a-2

1 2 (a + b~)
1 2 (a + b)

-
a)'



SOLUTIONS BY EULER. PROBLEMS 9, 9 A, 10 351

The following are simple cases :

(1) a= 5, t>=t, whence^ = 40, =
&, C= i, Z>=23, M=||.

(2) a -ii, b=2, whence ^-88, B = 16, <7= i, Z>=5i, = |.

If/= S*^ !> we can obtain integral solutions, thus.

A = 2oa, B = zob, C = 30^ + 2a, D = 8a - 20^,

.. _ 3 (
a + 6)

-a)'

Assuming then a = 19, =
7, we have

,4 = 380, ,5=140, =248, Z>=i2, ; =
,

so that the required numbers are

475. 175. 31, 15,

the sum of which is 975.

We can also solve the corresponding problem :

9 A. To find four numbers such that the product of any pair minus the

sum of all gives a square.

For we have only to give m a negative value.

PROBLEM 10. Tofind three numbers x, y, z such that

x+y + z \

yz + zx + xy L are all squares
1
.

xyz j

(This may be expressed as the problem of finding />, q, r such that the

equation ^-p^ + q^-r-o has all its roots rational while/, qt
r are

all squares.)

Take nx, ny, nz for the numbers required, so that

n(x+y + z) \

n*(xy + xz +yz) \
must all be squares.

tfxyz )

If the first and third conditions are satisfied, we must have, by

multiplication,

xyz (x +y + 2)
= a square.

Put therefore xyz (x +y + z)
= v1

(x +y + z}\

whence xyz = tf (x +y + z\ and z =

Since xyz =
'

^
we must nave> m order that nxyz may be

a square,
n = ni-xy (x +y) (xy

-
#*).

1
ffffi'i Commentarii Acad. Petropol. 1760-61, Vol. VIII. (1763), P- 64 sqq. =

lationes arithineticae, I. pp. 239-244.
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If the values of z, n thus found be taken, the first and third conditions

are satisfied, and the three numbers will be

nx - t/iVy (x +y) (xy
-

v*),

ny = trfxy* (x +y) (xy v*),

nz = nt&xy (x +y)
2
.

The second condition requires that

z/
2

(x + yf
xy + z(x +y) xy-\

!

p-
= a square.

Suppose for this purpose that xy-tf^u
2

(this introduces a restric-

tion because there are doubtless plenty of solutions where xy - tf is not

a square); therefore

_ v2 + uz

^ _ z>
2

(x +y)
*~ x '

u2 '

and xy = v* + a2
,
x +y =

,
so that we must make

X

,

v* + u2 + 5-^ a square.22

Put x = tv, so that y =
,
and

tv

* + * + VL\LL = a square,
i) +

2

}

2

/V

or /
2wV + /V + v* (f

2 + i)
2 + 2V (t

2 + i) + u* = a square,

i.e. if (/
2 + i)

2 + wV2

(3/
2 + 2) +

4

(/
2 + i)

= a square
=

{v
2

(/
2 + i) + .rw

2

}

2
, say.

Therefore w8

(3^ + 2) + w2
(/

2 + i)
= 2^ (/* + i) + J

2^2
,

^2 /2 + : _ ,y2

and
j
=

-j-^
r 5

= a square.

Further, let s = t r, and we shall have

v2 2rtr* + i

Multiply the numerator and denominator by 2r/ - r2 + i, and we have

The problem is accordingly reduced to making the denominator of this

fraction a square. If we suppose this done, and Q to lie the square root,

while / and r are determined as the result of equating the denominator to

Q2
,
we shall have

v 2rt-r*+ i , v2 + u2

-= __-,ail*=^
;
y = -sr

-
>

whence we can derive the numbers required.
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Now the denominator to be made a square is easily made such if the

coefficient of t*, or the absolute term, is a square; and the absolute term

is a square if 2 (r
-

i) is a square.

Case I. Suppose r=i; the coefficient of /
4

is then a square and the

absolute term vanishes.

We have 4/
4 - lo/3 + 4^ - 8/ = Q*, while v/u = 2tjQ.

Suppose Q = 2t- - 1/, and we have

4/
2 -8/ = W, and / = -V - = =

;

4/-5 '73

we therefore put # = -36, #=173, t = -$, and #:=/z;= 128; further

_
* + 3

_ 31225 _ 25 . 1 249
y ~

tv 128 1^8
'

173*. 128
'

and, since xy-v* = u*, the required numbers will be

nx =
i z82

. 25. 1 249- 47609- 1 73
3

^
128. 25

2
. 1 249

2
. 47609^ 73*

~"i28.178~~ '

36
2

. 128.25. 1249.47609'- ,

128. I282

In order to get rid of fractions, put m =
J-f^, and we have

nx= i282
. i73

2
. 1249. 47609 = 490356736. 59463641,

_y
=

5
2
.i73

2
. I249

2
. 47609 = 93453302 5 59463641,

nz = 36" . 1249 . 476o9
2 = 61701264 . 59463641.

The product of the three numbers is obviously a square; their sum is

found to be 25 . 5946364I
2

;
and the sum of the products of pairs

= 1 73
2

- 59463641" 18248924559376

= (i73 59463641

Case II. Put r = f ;
then

V- =
E2 ~

5
,
and

whence 6/1 -

Accordingly Q =

Therefore * =

u. D.

^ - ^, and / = f$.

if. and we put =
19,

= 14-
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and the required numbers are

That is, ## = 705600.2315449=1633780814400,

ny= 109172.2315449= 252782198228,

nz = 1500677 . 2315449 = 3474741058973.

The product of the three numbers is clearly a square; their sum will be

found to be 23I5449
2
;
and the sum of the products of pairs

= i4
2

- 23I5449
2

6631333489

= (14. 2315449. 8i433)
2

.

These numbers are much smaller than those first obtained.

If fractional numbers are admitted, we may divide those found in the

last solution by 23 15449% and the solution will be

PROBLEM n. To find four numbers x, y, 2, u such that

xy+yz + ...

> are all squares
1
.

xyz + yzu + zux + uxy I

xyzu J

A general solution being apparently impossible, some particular as-

sumption simplifying the problem had to be made. Euler therefore

assumed as the four numbers

Mob, Mbc, Mcd, Mda,

which assumption, although five letters are used, involves the restriction

that the product of the first and third numbers is equal to the product of

the second and fourth.

We must therefore have

M(ab + bc + cd + da) \

Af2

(ab*c + b?d + cd*a + da*b + 2abcd) I

dl resM3

(a&fd + ab<*d* + tfbcd* + a*Pcd)
|

J

1 Novi Commentarii Acad. Petrop., 1772, xvil. (1773), pp. 24 sqq. = Commentationes

arithmeticae, I. pp. 450-5.
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The above assumption therefore has the advantage of making the

product of the four numbers automatically a square and also of making the

third formula take the form

APaibcd (ab + bc + cd + da).

Since the first formula M\ab + be + cd + da) must be a square, it follows

that abed must be made a square.

In order to make the first and third formulae squares, take

or, if the latter expression has a square factor, say/
5
, put

M= (ab + bc + cd + da)\f.

We now have only two conditions remaining to be satisfied, namely

abcd=3i square .............................. (i),

aPc + bc*d+ cd*a + dd*b + 2abcd= a square ............ (2).

The expression in (2) reduces to

(a* + c
a
)bd+ac(P + d*) + zabcd,

or bd(a^ + c
3
) + (b + df ac = a square.

We have therefore only to find numbers a, b, c, d satisfying these two

conditions. It is further to be noted that a, c are connected by a relation

similar to that between b, d, and the whole question depends on the ratios

a : c and b : d. We may therefore assume a, c prime to one another and

likewise b, d prime to one another, for, if either pair had a common divisor,

it could be omitted and the relation would still be satisfied.

Consider now the second condition as being the more difficult Although
two ratios a : c, b : d are involved, neither can be arbitrarily assumed. -For

suppose e.g. that b : d= 2 : i
;
then 2 2 + 2t* + <)ae would have to be made

a square ;
this however is seen to be impossible, for, if we put a=p + q,

c=p q> we obtain the expression 13^- 5^, which cannot be made a

square. The same impossibility results if we put b : d=$ : i. Therefore

the ratios a : c and b : d can only be certain particular ratios.

Obviously the first class of ratios adapted for our purpose are square

ratios. Assume then that b : d =fr : q
3
,
and put

*)
+ <u(f -f fY = pqa + ,, say;

therefore
a
(/* + ^)

8 a + tfffc = zmnpqa + nfc,

_=
n?- n*f?

c~ i? (f + f)*
- zmnpq*

or, if m = kpq,



35.6 SUPPLEMENT

Now, if values could be found for k, n, /, q such as would make ac or

(& - n-) {n (p* + g*Y 2kff\ a square,

we should have a solution of the problem, since, bd being already a square,

abed would then be a square. Euler however abandons the investigation

of this general problem as too troublesome and as certain, in any case, to

lead to very large numbers; and, instead, he proceeds to seek solutions

by trial of particular assumptions.

Particular values of ajc in terms of p, q are the following, which are

obtained by putting > =
2, n=i

;
k = 3,

= i
; etc.

in.
'

, 5g .... iv.
a - ^f-

c 4(y+<rrr<r c

VI f= 24/V
^ (^

2 +72
)
2

a

c

Taking now the simplest values of bjd-p^lq^, let us write down the

simplest corresponding values for a\c :

if
^
=

T.
*

becomes f, -|, |, /F ,
--1

/-, ^, ^, ^;

if _ 4 ^
liprnmpc 4 12 a2 3 2 5 5 60 20." T Becomes 3, TT ,

-
T-, T5-, T7 , yy,

-T-, T ,

if
^

hprniTIPC 108 45 28 64 fi4
11

^ T>
~ uccujiies -2-g-> FT' TF> T' ^s'

The last assumption gives, "praeter exspectationem," two cases in which

ajc becomes a square ; and these give two solutions of our problem.

1. Putting a = 64, b = 9, c - 49, ^=4, we have

M=ab + bc + cd + da = $'](> + 441 + 196 + 256
= 1469*

and the four numbers are

1469.196, 1469.256, 1469.441, 1469.576.

2. Putting a = 64, /> = 9, ^=289, d - 4, we obtain

J/=576+ 2601 + 1156 + 256 = 4589,

and the four numbers are

4589.256, 4589.576, 4589.1156, 4589.2601.
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Again, the form of the expressions abed, bd (c? + e*~)
+ ac (b + df to be

made squares shows that any values for aje obtained by the above process

may be taken as values for bid. Also a and c may be interchanged. Euler

accordingly sets down as values of b\d\.Q be tried the following:

f , f , I, , , f*. , , etc.

He obtains no solution from the assumption bjd~^, but he is more
successful with the assumption bjd=\.

Putting bld = ^ t
we have to make

20 (a
2 + r2

) + 8io<r=a square.

This is satisfied by a\c=\; let therefore aje
= i + x, and we have to

make 20 {(i + x)
z + i} + 8i (i + x) a square; that is,

121 + I2ix + 20x^-3. square = (n + xyf, say;

121 - 22V ,a V2 22V+IOI ttt* +
therefore x = =-

,
and - =<-^-*

22mtl + -
,

c y-2o m*-2on-

and, by putting m 5, n i we obtain a/r= ^.

This solution serves our purpose, since it makes abed a square.

Putting a - 16, =5, ^=5, <^=4, we have

80 + 25 + 20 + 64 189M=
~7^- 7r>

and, if /^
=

3, M= 2 1
; the four numbers are therefore

21. 20, 21.25, 21.64, 21.80.

This is a solution in much smaller numbers
;
and

the sum of the numbers =9.21-,

the sum of products of pairs
= 1 1 o2

. 2 1
2
,

the sum of products of sets of three = i2o2
. 2i 4

,

and the product of all four = i6oo2
. 21*.

When one solution is known, others can be found. Take, for example,

the last solution in which, for bfd-^, we found that

a y* 22y+ IQI

C
~

jP20
In order that abed may be a square, we must have

5(y
s

-2o)(y-22j'+ 101)= a square.

This is satisfied by y =
5. Substitute 2 + 5 for y, and we have

5 (z
2 + 102 + 5) (z

2 - 1 20 + 1 6)
= a square,

or 400 + 5000-4950"- 102^ + 52*
= a square.
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Equate this expression to (20 + ^/-z ^-z*)
2
, and we have

\ 3 2
2 / 32

whence 3- "55. = 3- '5 = 33g.

266321 242II 2201 2201

therefore j = 2 + 5
= ^/^- ;

and the resulting values of a, c are large

numbers which Euler does not trouble to develop. Asa matter of fact,

a _ 55696 _ 4. n82

c "109465205 "5. 4679*
'

It follows that

f2M= 5 . 55696 + 5 . 109465205 + 4 . 109465205 + 4 . 55696

= 278480+ 547326025+ 437860820+ 222784

= 985688109;

and, putting/= 9, we have

M= 12168989.

The four numbers are therefore

12168989 . 278480, 12168989 . 547326025,

12168989 . 437860820, 12168989. 222784.

PROBLEM 12. Tofind three numbers x, y, z such that the expressions

X* +y> + z2
,

x2f + x2
z
2

+y
2
z
2

are both squares^,

In order to satisfy the first condition, we have only to put

x =p
2 + q

2 r2
, y =

2pr, z = 2qr,

for then x2 +/ + z
2 = (/ + q

2 + r2

)
2 = P2

, say.

The second condition requires that

therefore, since y* + z2 - ^r
2
(/

2 + ^),

<2
2 =^ (p* + y

2

) (p* + f- r2

)
2

or <2V4^ - (/
2 + f) (f + f- r2

)

2

In order to get rid of the sixth power of p and so make p* the highest

power of/, suppose that r-p-nq (which introduces no restriction);

therefore

2
2

/4 (/
-
nq? = (p

2 + q
2

} \znpq + (i
- n2

} q
2

}

2 + 4/V (/ - nqf,

or <2
2

/4?
2

(/
- nqf * (/

2 + ?
2

) {
2 / + (i

- n2

) q}
2 + 4/

2

(/ - ?)
2

-

1 Ada Acad. Scient. Imp. Petropol., 1779, Vol. III. (1782), pp. 30 sqq. = Commenta-

tiones arithmeticae, n. pp. 457 sqq.
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Let the latter expression be denoted by fi2
,
so that Q= 2q(p-nq) R;

and

^ = 4(1+
2
)/

4 - 4* (i + fP)fq + (i + 6rr* + ft
1

)/??

This may be made a square in two ways, either (i) by taking advantage
of the fact that the last term is a square, or (2) by making the first term,

i.e. making i + 2
, a square.

(i) Put .ff
s
={( I - 2

)r + 2 /V + a;>y> and make the term in q*

disappear by choosing a so that i + 6* + 4 = 4
2 + 20(1 -*), or

I + 2#2 + 4

a = ---
; we then have

whence (i5~35
2 + i3

4 - 6
)/ = 8(i -*) (3

-

this divides throughout by 3
- a2

, and

^ 5

Let/=-8(i -w2
), ^=5 io 2 + 4

; then r=p-nq = n (3 + 2*- 4
),

while

and a:, j, s can be expressed in terms of .

Ex. i. Suppose = 2; then

/ = -48, ^ = -19, r = -io, ^ = 7035, <2=38

x = 2565, y = 960, s = 380, or (dividing throughout by 5) x = 5130'= 1 92

2= 76 (in which case =106932, P=>^^).

Ex. 2. Suppose = 3; then p = - 192, ^ = - 4, r = - 180, or (dividing

by -4)

^ = 48, ^=i, '=45, ^=14120, =1270800;

x - 280, _y
= 90 . 48, z- 90.

Dividing the values of x,y, z by 10, we have

* =28, ^ = 432, =
9, and Q= 12708, /*=433-

(2) To make the first term in IP a square, suppose i + 2 = w2
,
which

is the case whenever n = (a
2-

tr)/2al>.

We have then

IP = 4m*p
4 - 4/ 2/V + (* + 4**

a)/y + 4 (i
- 8

)// ^ ( r ~ "T/

Euler solves this in three ways.
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First, he puts R=2mp2

nmpq + (i-n
2

}q
2

; and from this, by taking
a = 2, b = i, so that n - f ,

m = f ,
he obtains the particular solution

* = -39 2
> 7=i386

,
* = -ios6,

or x= 196, 7= 693, z = 528.

Secondly, he puts R = imf + 2npq + (i
- n2

) ?
2
, and deduces, by the same

particular assumptions,

* = 936, 7=74, 2 = 355 2
,

or * = 468, 7 =
37, 2=1776.

Thirdly, he supposes
w4 + 3

2

K = 2mp mnpq H a2
.

^m

where however the last term should apparently be q~.

Euler's son, J. A Euler, gave, in a Supplement to his father's paper,
another solution as follows.

We know that

(/ -
i)

2 + 4/>
2 = (/ + i)

2 and (g
n- -

i)
2 + 4^ = (f + i)

2
.

Multiply the first equation by 4^
2 and the second by (p- + i)-; this gives

or _ I/+
Therefore the three numbers

satisfy the first of the conditions.

The sum of the squares of the products of pairs of these numbers must
now be a square; after dividing out by 4^

2
,
this gives

(?
2 - 2

(/
4 -

i)
2 + 4/(?

2 -
i)

2 (/+ i)
2 + i6/V (/- i)

2 = a square.

But (/
4

-i)
2 + 4/

2

(/
2
+i)

2 = (/
2 + i)

4
;

therefore (/
2 + i)

4

(^
2 -

i)
2 + i6/V

2

(/
2 -

i)
2 must be a square.

For brevity, let A 2 = (/
2 + i)

4
,

* = io>
2

(/
2 -

i)
2

,
and

A 2

(f
2 -

i)
2 +^2

,
or AY + (B

1 - 2A*} q* + A 2
,

must be a square.

Put A2
q
i
+(JP

A1 _
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Now both the numerator and denominator of this fraction are squares
if v* = A- - ?, for the numerator becomes B* and the denominator

which is the square of A + ,J(A*
-
&}.

But, putting for A, B their values in terms of p as above, we have

<P-&=S
therefore

'

and the numbers required will be

8/

or, if we multiply by (/
2

i)
2
,

(6/ -/-!)(/ + 1),

The sum of the squares of these numbers turns out to be (/* + 1)
6
,

which is not only a square but a sixth power, while the sum of the squares

of the products of pairs is found to be

or

Ex. Put p- 2, and we have

-16.4.9. 337
2 = 8o882

,

the solution being in smaller numbers than Euler's own.

PROBLEM 1 3. To find
1
three positive integral numbers x, y, z such that

x +y + z =

To make ar'+y + z
2 a square, put x = a2 + $*-ci

) }>
= 2af, z = 2h, and we

have x2+f + z* = (a
2 + P + r8

)
2
.

We have now to make a2 + ^ + r8 a square, and we put similarly

af>ijrq
i rL

^
b = 2pr, c2qr\

we have then x2
+y> +

2 = (f + <f + r2

)
4
.

Now let us express x, y, z in terms of/, ^, r
; this gives

x =p* + f + r4 + 2ff + 2/V -

1 Commentationes arithmeticae, II. pp. 399-400.



362 SUPPLEMENT

therefore

x +y + z =p* + q* + ?
A + 2/V + 2/V -

(1) Arrange this according to powers of/, and

x+y + z =/4 + 2 (^ + r)
2

/2 + 8/tyr
2

In making this a square, we have to see that />, g, r are all positive, and

also/ + ^ > r'. Also o2 + 2 must be > <?.

Equate the expression to {/
2 + (q + r)

2

}

2
,
and we have

8/^r
2 + / + 4?V- 6/r2 - ^r3 + r* - (? + r)

4
,

whence 8/tyr
2 = 1 2^

2^ + S^r
3

, or / = \q + r.

Therefore a = \3
-^

2 + ^r, b = $qr + 2^, c = zqr,

where both the letters ^, r may be given any positive values.

Ex. i. Suppose 4=2, r= i
;
therefore

/ =
4, a -19, l> = 8, c = 4;

accordingly the numbers are

# = 409, .7=152, 2 = 64,

and ^+^ + 2 = 625 = 25
2
,

xi

+y
i + zi = 194481 = 44i

2 = 2 1
4
.

Ex. 2. Let q = 2, r = 2
; therefore

/ =
'5,

=
25, ^=20, r=8,

and #=961, _y
= 4oo, 2 = 320;

therefore #+jy + 2= 1681 =4i
2
,

^2
+_y

2 + 22 = 1185921 = 33
4

.

(2) Arrange the expression for x+y + z according to powers of g ;

this gives

x+y + z = #
t + 44?r + 2^ (p*

-
y"} + ^qr (f- + zpr

-
r*) + (p- + ^)

2
.

In order that the terms in q* and q* and the absolute term may vanish,

equate the expression to

te
2 +2^-(/2 + ^)}

2
,

2pr (p + r)
whence we obtain q - ^-

^
.

2r--p*

Ex. Suppose/ =
i, r = i

;
therefore

q = 4, a= 16, 6=2, c = S,

or (if we divide by 2) a = 8, b - i, c = 4 ;

therefore x = 49, y = 64, 2 = 8;

and #+_>' + = ii 2
,

#2 +yj + 22 =656i =8i 2 = 9
4

.

These numbers are no doubt the smallest which satisfy the conditions.

The case of three numbers is thus easier than that of two (see p. 299,

note). Euler solves the same problem for four and five numbers, and shows

how the method may be extended to six numbers, and so on indefinitely.
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PROBLEM 14. To find three numbers x, y, z, positive and prime to one

another, such that both x+y + z and x?+y
2 + z li are fourth powers

1

.

As in the above problem, put

x = az + b* c
2
, y = 2ac, z 2bc,

and further a=fl* + qr
i

-r*, b- 2pr, c = zqr,

and make the expression in /, q, r for x +y + z a square by equating it

to {f + (q + rff as before. This gives / = \q + r; but we have now, in

addition, to make /2 + (q + rf a square.

therefore g* (? + r)
= zfgp +f> (q + r).

Substitute fq + r for/, and this becomes

whence

The problem may therefore be solved in this way.

Take q =/2 + 2fg-g* and r = g*
-

3fg-/*,

so that / = ^(/
2 -"2

),
then find a, t>, c, and then again x, y, z, in terms

of/.?.

Ex. Let /= 1,^=3; therefore

# = -2, r = -i, p = -4,

or 4=2, r=i, p =
4.

Thus aig, ^ = 8, ^=4,

and ^ = 409, ^=152, 2 = 64;

so that x+y + z = 62$ = $*, x2

+y
2 + z*= 194481 - 2 1

4
.

To find limits for the values off, g, change the signs of q, r, putting

V=g*-2fg-f\ r=f^ Zfg-g\ / = iQr
2-/2

)-

In order that q may be positive,

glf> i +V2>2.4i4...,

and, in order that r may be positive,

Suppose e.g. that /= 2, g = 5 ;
then

y=i, r=<), p = Q,
or in integers f-2, r=iB, p = 2i;

hence a =121, =756, ^=72,

^=580993, JF= 17424, 2=108864,

= 707281 = 29
4
, ^+j2 + 22

1 Comtnentationes arithmeticae, n. p. 402.
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PROBLEM 15. (Problem in Fermat's note on vi. 13.)

To find a right-angled triangle (in rational numbers) such that either

of the sides about the right angle less the area gives a square^.

Let the perpendiculars be ,
-

,
so that the area is -^ ;

and

2X XV---^ or 2xz xy2

- -
-^- or yz

- xy

y
as well as -- or 4^ +y

have to be made squares.

Since the first two expressions are to be squares, their product must be

so also
; therefore

2xyz* tot?yz xy*z + x*y*
= a square

and, after dividing byyz, we have

2p
2x2 - 2oc - xy = - xy +

* L *

Whence

Thus =

p*xy + fxy - 2pqxy = xy (p
-
qf

2<?x-fy 2<fx-J*y>

x (2qx -pyf x2
(2qx

-pyfand 2xz -xy= -$2L j >

Therefore the two expressions are squares if 24*x
2

p*xy is a square.

therefore (2^
-

r*} x = p*y, or x/y=f-/(2?
z
-r*).

It is sufficient for our solution to know the ratio x/y, since a common
denominator z has already been introduced.

Therefore we may put

1 Novi Commentarii Acad. Petrop., 1749, Vol. II. (1751), pp. 49 sqq. = Commentationes

arithmeticae, I. pp. 62-72.
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whence ,-, =*

and ^ .

It only remains to make 4*? +y* a square ; that is,

4p' + 42
4
~44

2r2 + ?
A must be a square.

A general solution of this equation giving all possible values of /, q, r

is impossible. We must therefore be satisfied with particular solutions.

Particular solutions (i) and (2).

Put 4/ + 4?*

therefore 4

and /! = + (?
2
-^),

that is, either

(') /^Vfe'-O, or (2) / =

(i) Now / = ^ V^2 "
**) is satisfied by q = + <t\ r = 2cd, whence

or we may put

/ =
(t* + <P) (r

-

and we thus find values for

Ex. i. Suppose c= 2, d- i
;
then

/ = 5-3 =I 5> ^ = 4-5 = 20 r= 4.4=16,

544.25 25.89 2225- -- =--

and the triangle is

2 44 J 435 2
= =

2
~

89
'

2 25.89' * 25.89

Ex. 2. If r = 3, d= i, we get the triangle
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(2) In this case p - -
J(r*

-
q
z

\ and we have to put

2Cd(<*-<
\ g= 2cd, whence p =

or p = 2cd (<?
- dz

), q=
while

Here, since 2<f must be > r2

,

&<?d* > (c
z + d*f and 2cdj

therefore d*>(c-d >J2)
Z

, and

either d>c-d^2, so that ->
c i + V 2

'

or d>d^2-c, so that -<
C *J2

- I

If therefore d=i, either c<^2 + i or 0^2-1. The second

alternative is satisfied by c> i.

Ex. Let c - 2, d= i, and we have

^ = 4.3=12, ^ = 4.5 = 20, ^=5.5 = 25;
therefore

The triangle is therefore

2X
= 288.25 = 45_o . J = 25-I75 = 4375 . V(4^

2

+y) = 25.337 = 8425
z 4048 253' z 4048 4048' * 4048 4048'

Particular solution (3).

Put 4/4 + 4^

therefore ^ -
4?V = 8/V

2
, and /

2 =

therefore either / = ^(zr
3 -

8^), or p =

The first value is however useless, since 2q-
- r2 > o, or

We have therefore / = J(Sa
2 -

2^),
, .. 4f

while

Since 8^
2 2^ must be a square, put
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therefore 4^
- 2r = ^ (zq + r\ or ^d'

2

q
- 2^/V = 2<?q + <?r,

whence

2r*)
= Scd, and therefore * =

Multiplying by zd'1 + , we have in integers

while x, y, z have the values above stated.

Ex. i. Put c= i, d= i
; therefore

/ = 4 ? = 9> r =6; x=i6, y=i 2 6, ^(4^ +/)= 130,

j . 126 . 25 207and 2=16 + --7-^= ^-.

36 2

The triangle is therefore

64 22 *2 + 260

207' z
~

207
'

z
~~

207'

This is the triangle in the smallest numbers satisfying the conditions, as

Euler proves later.

Ex. 2. Since 2^
a >r2

,
it follows that

'

c\d > 2 - ^2 ;
but it does not

matter whether 2d'2 > <? or not, since /, y, r may be negative as well as

positive.

Put then d= 2, c=$; therefore 2d'2 - <? = - i, and 2d'
2 + <? = 17.

We then have p - -
24, ^ = 289, r - - 34 ;

The triangle is therefore

?f =
234 J = 28.41. if J(4X*+f) = 4-5-53-3 I 3

z 28118255' z 28118255' -z
'

28118255

It is to be observed that in all the above examples it matters not

whether c, d are negative ; it will only result in the values of / or q or r

becoming negative, but the values of x and y will not be thereby changed.

Only z will vary, since z may be either

y(p- ?)
2 y (P + v?

x + , or x + J ^ .

After remarking that the problem of making

4/
4 + 4^ - 4?

2^ + ^ or 4/
4 + (24*

- r2

)

2 a square

may be solved generally by equating it to

Euler passes to his general solution.
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General solution.

If
,

- are the perpendicular sides of the triangle, let x - ab,

y = a*-lr*i the triangle is then

2ab rf-P a* + t?

and the area is

Now we found above, at the beginning of the investigation, that

_ = 2q
ix* + q^xy

- 2pqxy = ^ [

xy (p
- q?

2q
lx-fy zfx-fy*

or, since q can be taken positively as well as negatively,

where x = ab, y = a* IP.

And we took 2?*x
2 -pz

xy = r*

y(pgf (^whence z = x + I = ab+^ -

We have therefore only to satisfy the equation

and, since xy = ab(d
i -by

),
we have to find such numbers for a, b that

ab(<?-F) may be of the form 2/
2 -^2 or (2/*-g

n

-}h\

Suppose now that such numbers a, b have been found that

ab(o?-b^ =
(2

Then, since x = ab,

and a natural inference is suggested, namely that

aba abr .

Let now p ab, and accordingly

the triangle is then

2ab

+ (a
2 -

P) (ab fKf
'

abg'W + (a
2 -

P) (ab fhf
'

abgW + (a
2 -

P) (ab fKf
'
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Also from any particular values of a, b any number of triangles can be
derived satisfying the conditions.

For, if p ab, and
a& (<*-&) = (*/*-?),

we have (a/
3 -

g*) h* = 2<?- r>,

or

Put 2(/a + ?)
=

(tf* + r) f 9*&fk- 9 =

therefore q =
*mngh-##)jk

^

-)gh
- qmnfh

21? -n?

or, in integers, p-(2f^ m-) ab,

q = 2mngh - (20* + m2
)fh,

r = (2#
2 + *

2

) gh

while z

rr, , - .

Thus the triangle I
,

-
,
-

I is known.
\ z z a /

Lastly, to find suitable values for a, b, Euler writes down all the

numbers from i to 200 which are of the form 2/2 - w2
, including all the

squares arising from the supposition that u = t, and all the doubles of

squares corresponding to u - o. Inspection shows that the table contains

(within the limits) all the prime numbers of the form 8/ + i, and no other

primes, the doubles of the primes, the products of the primes into all

squares and into one another, and the doubles of those products.

Now, since the product a . b (a + b} (a
-

b} is to be of the form z/2 - ir
1

,

and the factors a, b, a + b, a b are either prime to one another or at the

most have 2 as a common divisor, while 2 is itself contained in the form

2/2 - 2
,
the several factors must all be of that form, in which case the

product will be of that form.

We have therefore first to take some value of b in the table and then see

whether there are in the table three other numbers a&, a, a + b differing

by b. Euler gives a second table showing values of a corresponding to

values i, 7, 8, 9, 16, 17 etc. of b.

The values of a in the table corresponding to b=i are 8, 17, 63,

72, 127.

Ex. i. Take b= i, a = 8
; therefore

ab = S, <?-P = 63, a(aa - 2
)
= 8.9.7 = 4.9. 14,

and 4.9. 14 = A
2
(z/

2-^2
),

so that h = 6, 2/*-g*=i4, and accordingly

/=3> ^= 2 -

H. D. 24
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We have therefore in this case

/ = 8(2
2 -0*2

), ^ = 24/;m-i8(2
2 + ;

2

),
r= 12 (zn? + m*)

-
>j
2tnn

;

or, dividing by 2,

Thus there are any number of values of z from which triangles may be

obtained satisfying the conditions.

The simplest value is found by putting m=i, n = o, whence

and either z = 8 + . 25
=

!,

or z = 8 + f.i69 = lYJL -

The first value gives the triangle in smallest numbers above found

(P- 367),

2ab_ _ _64_
a2 -^2

_ 252 cP + P = 260

z
~
207' z 207' z 207'

Substituting 1215 for 207, we have the sides of the triangle corre-

sponding to the second value of z.

The particular triangles are also directly obtained from the values of

a, t>, f, g, h without bringing in m, n
;

for

thatis
,

Ex. 2. Take ^ = 41, a 112; therefore

0^=7.16.41, a2 -^2 = 71 . 9. 17,

and ab(c?
-
P) = 16 . 9 . 7 . 17 . 41 . 71 = (

2/2

whence h - 12, and 7 . 17 . 41 . 71 = 2/
2

g*.

The simplest solution is/ =41 7,
=

37.

is easily found, and consequently the triangle

zab a*-P a* +

[Euler finds values for/ g by using the formulae

(2a
2 -

/
82

)(2y
2 -82

)
= (2ay^8)

2

-2()
8y

and x* - 2f = 2 (# j>/)

2 -
(a: 2j>;)

2
.
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He does not actually give the steps leading up to the particular

solution 7=41 7, -=37, but it can be obtained thus.

Since 7
= 2. 2

2 - i and i7 = 2.3
2
-i, we have

7. l7=(2.2.3+I.l)
2 - 2 (3. I + 2.I)

2

= i3
2 - 2 .5

2 = 2 (i3-5)
2

-(i3-2. 5 )
i = 2 .82

-3
2

.

Again, since 41 = 2 . 5
2 -

3
2 and 71 = 2 . 62 - i

2
,

it follows that

4I . 71^(2.5. 6-3. i)
2 - 2

( 3 . 6-5. i)
2

= 57
2

-2.i3
a

=2(57-i3)
a

-(57-2.i3)
2 = 2 .44

2

-3i
8
.

Therefore, by multiplication,

-
7 97

2 - 2 . 38o
2 = 2 (797 -38o)

2 -
(797

- 2 tfY= * 4i7
2
-37

J

-]

PROBLEMS 16. "De problematibus indeterminatis, quae videntur plus

quam determinata 1
."

We have seen that by means of certain " Porisms "
stated without

proof Diophantus is able to obtain relations between three numbers

x, y, z which have the effect that, when they are satisfied, a quite

appreciable number of symmetrical expressions in x, y, z are auto-

matically (as it were) made squares.

It is clear therefore, says Euler, that, if a general method of finding

"porisms" of this kind can be discovered, the whole subject of Diophantine

analysis will be appreciably advanced. Accordingly he proceeds to discuss

such a method.

The method depends on a Lemma the truth of which is evident.

Lemma. If values have been found for the letters z, y, x etc. which

satisfy the equation W-Q, where W is anyfunction of those letters,

and P, Q, R etc. are other functions of the letters such that P+W,
Q + W,RW etc. are squares, then, if the values of z,y,x etc. are

taken which satisfy W=o, the resulting values of P, Q, R etc. will

also be made squares.

Cor. P, Q, R etc. will similarly be made squares if P+ a W, Q + ft W,

yW&c. or, more generally, if

etc.

are squares.

Conversely, If such values for z, y, x etc. have been assigned as will

satisfy W= o, all formulae such as P2 + a W, Q? + p W, R* + yW etc. will

at the same time be made squares.

1 Novi Commentarii Acad. Petropol., 1756-57, vi. (1761), pp. 85 sqq.
= Commenta-

tiones arithmeticae, I. pp. 145-259.
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And, as the number of such formulae is subject to no limit, it is clear

that an unlimited number of conditions can be prescribed which are all

satisfied provided that the one condition W= o has been satisfied.

The same Lemma can be extended to the case of cubes or any higher

powers ; for, if W= o has been satisfied by certain values, all expressions of

the form P3 + aW will thereby be made cubes, all expressions of the form

P* + aW will be made fourth powers, and so on.

While it is plain that, if values for z, y, x etc. are found which satisfy

the condition W= o, all the expressions P2 + a W, Q 2 + ft W, R 2 + yW etc.

will be made squares by the same values of x, y, z, the difficulty will be,

when a number of expressions P2 + a W, Q 2 + ftW etc. are given which are

capable of being made squares in this way, to identify and separate the

expression W the equating of which to zero will make the rest of the

several expressions automatically squares. It would indeed be easy so to

hide away the composition of the expressions as to make this separation

itself a most arduous problem. On the other hand it is easy and in-

teresting to begin with W= o, and then investigate the simpler formulae

which can by this means be made squares. Before proceeding to the

particular cases, Euler observes further that it is convenient to take for W
an expression in which z, y, x etc. enter symmetrically and can be inter-

changed ;
for then, if P2

is such a square that P2 + aW is a square, and

z, y, x etc. are interchanged so as to turn P 2 into Q 2
,
R 2

etc., Q 2 + a.W,

R"1 + aW etc. will also be squares. Also, since solutions in rational

numbers are required, z, y, x etc. should not enter in any higher power
than the second into the expression W. Euler begins with expressions

containing two unknowns 2, y only.

Problem (i). Given W=y + z - a = o, tofind the more simpleformulae
which by means of this equation can be made squares.

When the equation y + z-a = o is satisfied, it is clear that the general
formula P2 + M(- a +y + z) will become a square whatever quantities are

put for P and M. Accordingly Euler, by giving /*, M various values,

obtains without difficulty 44 different expressions which become squares
when y + z a o.

He supposes M- 2,
-

2, 2, -y,
- z -y, y + z + a, n (y + z + a),

(y + z + a)(y-z + a)(z-y + a), and 3 and n2 - i times the last expression

respectively, and with each of these assumptions he combines one or more

forms for P. I need only quote a few expressions which are thus made

squares, e.g.

(y
-

i)
2 + 2 (- a +y + z} =y

2 + 22

(2
-

i)
2 + 2 (- a +y + 2)

= 22 + 2y ++ i - 2aJ
'
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(y
- z + i

)

2 - 2 (- a +y + z)
= (y

-
zf - 40 + i +

2a\

y(-a+y + z) =y
z + znz + n" 2na,

-(y + z) (- a+y + z)
= ay + az

(yz -nY + n(y + z + a) (- a +y + z) =yi
z* + tiy

2 + nz* + 2 -

(y*+ z
2

+a?)
2+ (y+z + a) (y-z + a) (z-y+ a) (-a+y + z)

and so on. Wherever a new expression can be got by interchanging z

and y, this may be done.

Taking the more particular case of W=y + 0-1=0, Euler obtains the

following expressions which are thereby made squares,

y + 42, f-y + z, y + z, y-yz,

z* + ty, z*-z +y, z -yz,

/Z
2 +/ + Z

2
, 2/+2Z2

-!,

which indeed are easily seen to reduce to squares if we put y + z=i or

y=i-z.
The fact that j

2
2
2
+y* + z

2
is a square if y = i z or, more generally, if

y = iz, is included in the Porism in Dioph. v. 5. Similarly

is made a square if we put y = a z.

The last expression but one in the first of the above lists, namely

y*z
z + ny* + nz* + ri*- na\ becomes a square whatever value n has. If a = t,

it becomes

y>z* + ny* + nz* + n2 - n

or (f+n)(z'
i + n)-n.

That this is a square when z -y i is part of Diophantus' assumption

in v. 4 (see p. 104 above).

Euler's Problems (2) and (3) similarly show how to find a number of

formulae which are all made squares by values of y, z satisfying the

equations W-yz -a(y + z) + t> = o and W=y* + z2 2nyz -a-o.

He then passes to the cases where there are three unknowns.

Problem (4). Given W- x+y + z-a =
o, to find the more noteivorthy

formulae which can be made squares by satisfying this equation.

In this case the general expression P* + M(x +y + z-a) becomes a

square.
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Put M- 2n and P= one of the expressions x -
n, y n, z-n, or one

of the expressions y + z n, z + x n, x +y n.

These assumptions make the following expressions squares :

z
2 + 2n (x +y) + n?-2na, and the two other similar expressions,

(y + zf + 2nx + ri* - 2na,

IfM 2nyz, P=yz ny nz, and so on,

jV + 2nxyz +
2y + V + 2n (n

-
a)yz

and the two other similar expressions are squares.

IfM= -
(a + x +y + z), /> =j> + 2 # and corresponding expressions,

2
4yz

- 4yx are all squares.

a?-4zx-4zy ]

In particular, if n = 2a, a- \, the following six expressions are made

squares by putting x +y + z = ^ :

y* + z + x,

z* + x +y, (x +y)
2 + z.

If a = 2, we make the expressions

i xy xz

i-yz-yx
i zx xy

all squares by putting x +y + z = 2.

Problem (5) finds expressions which are made squares if

W=yz + zx + xy a (x +y + z) + b = o

is satisfied.

Problem (6). Given W= x2

+y
z + z2 - zyz 2zx 2xy -a =

o, to find
the more simpleformulae which can be made squares by means of solving that

equation.

Here the general formula will be

If J/=-i, P=x+y + z,

4yz + 4zx + ^xy + a = a square.

If M= -
i, P=y + z-x, etc.,

"I4zx + a h are squares.

\xy + a

I(Af=-i, P=y-z, etc.,

a + 2 (y + z) x -

a + 2 (z + x)y y* V are squares.

a + 2 (x +y) z

- x2
"i

y* V

z2 J
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In the particular case where a - 4*1, so that

* = 2yz + 2zx + 2xy + 4*,

zx + n

- xy + n
are all squares;

yz f zx + xy + n J

or our formula gives the means of solving the elegant Diophantine
problem :

Given any number n, tofind three numbers such that the product of any

pair added to n gives a square, and also the sum of the products of the pairs
added to n gives a square.

By solving the equation

IV 3? +y* + z3 2yz zzx 2xy 4 = o,

we obtain z = x +y 2J(xy + n).

We assume, therefore, such numbers for x, y as will make xy + n a

square; suppose xy + n = u*, and we then have two values for z, namely
z = x +y 2u, each of which along with x, y will satisfy the conditions.

In fact, if z = x +y 2u, while u - J(xy + n),

J(xz + n)
= %(x + z -y) = xu,

(Cf. Euler's solution of Dioph. in. 10, p. 160 above.)

Problem (7). Given

W- y? +y* + z* - 2yz 2zx - 2xy 2a(x+y + z)-6 = o,

to find the more noteworthy expressions which can be made squares by

satisfying this equation.

The general expression here is

P* + M{x* +y* + z*- 2yz
- zzx - 2xy

- 20 (x +y + 2)
-

b}.

IfM- -
i, P= x+y + z + a, we have

(a) 4yz + 4zx + 4*y + 4a(x+y + z) + a* + 6 = 3i square.

=-i, P=x+y+z-a,
^) 472 + 4zx +4xy + al + 6 = a. square.

=-i, P=y + z-x + a, etc.,

4yz + 40 (y + z) + a* + b \

(c) 4zx + 40 (z + x) +
s + b [ are all squares.

4xy + 40 (x +y) + a* + b
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IfM= i, P=y + z - x a, etc.,

4yz + 4ax + a? + b \

(d) ^zx + 4ay \-cP-\-b L are all squares.

4xy + 4<zz + d* + & )

Cor. i. In order to solve the problem represented by (c), equate the

expression 4xy + 40 (x +y) + a? + b to a square #2
, whence

4 (x + a) (y + a)
= u* - b + 30?,

or (x + a) (y + a)
= % (u* -b + 3a

2

) ;

x and y are then determined by splitting \(u*-b + 3<z
2

)
into two factors

and equating x + a, y + a to these factors respectively. Next, solving,

for z, the equation

x2

+jv
2 + z

2 -
2yz

- zzx - 2xy
- za (x +y + z)-t> = o,

we find, since 4xy + 40 (x +y) + cP + b = u*, that

z x +y + a + u.

Cor. 2. If b = a2
, then, by solving the equation

x2

+y2 + z2 = 2yz + 2zx + 2xy + 2a (x +y -f z) a2
,

we make all the following formulae severally squares,

yz + a (y + z), yz + ax,

zx + a(z + x), zx + ay,

xy + a (x +y}, xy + az,

yz + zx + xy,

yz + zx + xy + a (x +y + z),

by assuming
z = x+y + a+ 2,J{xy + a (x +y)} = x +y + a+ 2u,

where (x + a) (y + a) is put equal to 2 + a2
.

An interesting case of this last problem is that in which a = i
; and

from this case we can deduce a solution of a new problem in which the

corresponding expressions with #2
, y

2
,
z2 in place of x, y, z are all squares.

The problem is

Tofind three square numbers such that (i) the product of any two added

to the sum of those two, (2) theproduct of any two added to the third, (3) the

sum of the products of pairs, (4) the sum of the products ofpairs added to

the sum of the numbers themselves, all give squares.

We have to find values of xz
, y

z
,

z"* which will make all the following

expressions squares,

/Z
2 +/ + Z

2
, /Z2 + X2

,
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As we have seen, all these will be squares if

z* = x* +f + i + 2 y(*y + of + f).

We have also seen (Problem (i) above) that x?f + x>+f becomes a

square if only y = x + i. Put then y = x + i, when we have

2
2 =2^2 + 2X+ 2 2 ,J(x*+2X

3 + ^X
2 + 2X + i);

that is, = 4 (* + * + i).

It only remains to make x2 + x + i a square. Equate this to (- x + f)\
and we have

whence

Therefore the roots of the required squares are

Or, putting t=(r q)\zq, the values become

4qr $qr zqr

Let ^ = i, r = 2, and we have a; = f, y -
1, a = J ; or, if we put / = 2 in

the values expressed in terms of t, the values are x = f, y = f, z = Y-

PROBLEM 17. To find two fourth powers A 4
,

4 such that their sum
is equal to the sum of two other fourth powers^.

In other words, to solve the equation A* + '= * + >', or (what is

the same thing) A* - >* = C* - \

It is proved, says Euler, that the sum of two fourth powers cannot be

a fourth power, and it is confidently affirmed that the sum of three fourth

powers cannot be a fourth power. But the equation A* + * C* = 2)* is

not impossible.

First solution.

Suppose A =p +
<?, D=p-q, C-r + s, B = r- s;

thus the equation A 4 - Z> 4 = C4 - *

becomes pq (p- + q*)
=

rs(r* + s?).

Put p = ax, q = by, r = kx and s =y, and we obtain

ab (aV + bY)

1 Navi Commentarii Acad. Petropol., 1772, Vol. XVII. (1773), pp. 64 &\<\.=.Commen-

tationes arithmeticae, I. pp. 473-6; Mt'moires de FAcad. Imp. de St Pitersbourg, XI. (1830),

pp. 49 sq.= Comment, arithm., II. pp. 450-6.

24~5
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therefore ^= ^ -r ,
which fraction has therefore to be made a square.

One obvious case is obtained by putting k = ab, for then

whence _y
=

a, # = i, so that p = a, q = ab, r-ab, s = a, and the result is

only the obvious case where # =
s, q = r.

Following up this case, however, let us put k = ab(i + z).

We then have

x?~ ab (P-i- z) Ir - i - z
'

therefore, multiplying numerator and denominator by P - i - z and ex-

tracting the square root, we obtain

To make the expression under the radical a square, equate it to

and assume /, g such that the terms in z, z2 vanish.

In order that the term in z may vanish, /= | (3/r- i), and, in order

that the term in z
2

may disappear,

3^2 -
2)
= 2 (P- i)g+f>= 2 (^-

t_*-
whence __.

The equation to be solved is then reduced to

Now b can be chosen arbitrarily; and, when we have chosen it and

thence determined z, we can put

x b2
i 2, y

and accordingly

-\ +fz + gz*), s = a(F-i +fz -f gz"),

where we may also divide out by a.

If x, y have a common factor, we may suppose this eliminated before

J>, q, r, s are determined.
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Ex. i. Let b = 2 (for b cannot be i, since then g would be oo
).

TViorAfnrA f ii <T zs -_6OOIneretore /-->r> ^-~TT 2 -T?27-

As a does not enter into the calculation, we may write i for it :

therefore

6600 2187 ii 6600 25 /66oo\ s

=* --- =-- = ----"-
/2929 2929 2 2929 24

= - + 55407 -"QQ = 3 2889494

2929* 2929*

But the ratio x :y is what we want, and

y = 3 . 28894941 = 28894941 = 3210549 = 1070183
.Y 2187.2929 2929.729 2929.81 27.2929'

so that we may put
x = 79083, .7=1070183.

Therefore

/ = 79083, r= 27. 19058 =514566,

^=2.1070183 = 2140366, 5=1070183.

Consequently

A=p + q= 2219449, C=r + s= 1584749,

^ = r-5 = -5556i 7 ,
D = p-q = -2061283,

and A 4 + *=C4 + D*.

Ex. 2. Let b = 3 ;
therefore /= 13, g = f ,

* = fr J

^^ 3-369 no7_27-4i.
***<s+^"i6r"is9~ i69

'

200 8.144*=
-T6^

=
~T69~'

5 200\ - 200 2447 _ 8.89736
* + 4'-^)

= +^'~^~ 16?

x 8.144-169 6.169
Therefore - = -

8Tg^ '^3-9'

and we may put -v = 1014, y = 3739-

Accordingly / = io 1 4, r=~* . io 1 4 - 6642,

^=11217, ^ = 3739.

and therefore ^ = 12231, (7=10381,

.5=2903, Z> = - 10203,

and again A 4 + 4 = C<
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Another solution in smaller numbers.

In the second of the papers quoted Euler says that, while investigating

quite different matters, he accidentally came across four much smaller

numbers satisfying the conditions, namely,

,4 = 542, .5=103, ^=359. ^> = 5 I 4,

which are such that A* + E* = C* +D 4
.

He then develops two methods of analysis leading to this particular

solution; but, while they illustrate the extraordinary ingenuity which he

brought to bear on such problems, they are perhaps of less general interest

than the above.
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I. GREEK.

"impossible," 53

01X0705 (
= " undescribed

"
apparently),

Egyptian name for certain powers, 41

dipto-ros, indeterminate: xX^tfos /j.ovdSuv

dopiffrov, an undetermined number of

units= the unknown, dpi0/i6j, i.e. x, 32,

115, 130 ; iv T(J> dopiffTif, indeterminately,
or in terms of an unknown, 177

apifffjujriK^ distinguished from XoytorwnJ, 4

dptOfibs, number, used by Dioph. as techni-

cal term for unknown quantity (=x),

32, 115, 130; symbol for, 32-37, 130

dptOfMffTbr (=!/.*) and sign for, 47, 130

S.TOTTOS,
"
absurd," 53

StirXij Iff6n)t or SirXoib-injj, double-equation,

square," used for square of un-

known (
=xi

): distinguished from rrrpd-

yuros, 37-38 ; sign for, 38, 129 ; Terpav\ij

Svva/jus, "quadruple-square," Egyptian
name for eighth power, 41

5vva./ju>8vvanis, fourth power of unknown

(=jr
t
), sign for, 38, 129

f, submultiple of 8\n>a/4odv-

(= i/*
4

)
and sign, 47, 130

i>/3os, "square-cube" (=x5), sign

for, 38, 129

SwapoKvpoffTor, submultiple of 5wa/t6/ci>/3oj

(=ilx
5
) and sign, 47, 130

5wanoffT&v, submultiple of SuVa^us (
=

i/jr
2
)

and sign, 47, 130

elSos, "species," used for the different terms

in an algebraic equation, 7, 130, 131

AXei^-tJ, "deficiency": *r tXXei'feaf riva,

etSii, "any terms in deficiency," i.e.

"any negative terms," 7, 131

, "existent," used for positive

terms, 7, 130

ttrdvffijfJM ("flower" or "bloom") of

Thymaridas, 114-116

&roy, equal, abbreviation for, 47-48

Kv/36jrv/3o?, "cube-cube," or sixth power
of unknown (=x9)t and sign for, 38,

129

KvfioKvf)o<rr6v (= i fx*) and sign, 47, 130

iru/Joj, cube, and symbol for cube of un-

known, 38, 1 29 ; <n'</3oi e|Xi/tT6f, Egyp-
tian term for ninth power (x

9
), 41

(
=

!/-**) and sign, 47, 130

Xefareir, to be wanting: parts of ve

to express subtraction, 44 ; Xehrorra eldy,

negative terms, 130

X^, "wanting," term for subtraction

or negation, 130; Xety (dat.) = minus,

sign common to this and parts of verb

\fi-reif, 41-44

X0yrTuti), the science of calculation, in;
distinguished from dfH0/MjruoJ, 4

*- I44-
/i/x)5, "part," =an aliquot part or sub-

multiple ; fi^prj,
"
parts," used to describe

any other proper fraction, 191

/ttijXfTijj dpidfjidf (from /x^Xor, an apple), 4,

"3
pord*, "unit," abbreviation for, 39, 130

Mopto<mrd, supposed work by Diophantus,

3-4

fwpiov, or iv i^pitf, expressing division or

a fraction, 46, 47

/xt/ptAi TPUTTJ, dtvrtpa, 47-48
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6/ju>w\i)9r} (etSi}), (powers of unknown)
"with the same coefficient," 7

*, value of, calculated by Archimedes

and Apollonius, 122

trapiff(>Tris, TrapiffbnjTos dyuy/i, approxima-
tion to limits, 95 sq., 207, 208, 209 .,

211

ir\a<Tna.TiKt>v, "formativum" (Tannery),

meaning of, 140 ft.

irXfvpd, side, = square root, 65 .

w\rj0os, "number" or "multitude," used

for "coefficient," 64 .

wp6raffis, proposition, 9

ffTfpe6s, solid, used of a number with

three factors, 183 .

ftovASuv, "heap" or collection of

units, 37

aapds, "heap," 37

rpaTrX^ Svva/jus, "quadruple-square,"

Egyptian term for eighth power, 41

, "existence," denoting a positive

term (contrasts with \^ts), 41

inrdpxovra (et8ri), "existent" or positive

(terms), i^on.

<f>ta\lTrfi apiff(i,6s (from 0iX??, a bowl), 4,

"3

of Apollonius, 122

, determinate, 115

II. ENGLISH.

Abu'l-Faraj, i

Abu'1-Wafa al-Buzjanl, 6, 19
Achmim Papyrus, 45

Addition, expressed in Dioph. by juxta-

position, 42; Bombelli's sign for, 22;
first appearance of + , 49 .

Ahmes, 112

Alfraganus, 20

Algebra: three stages of development,

49-51

Algebraical notation : Diophantus, 32-39,

41-44; Bombelli, 22, 38; earlier Italian

algebraists, 38 ; Xylander, 38, 48 ; Bachet

and Fermat, 38 ; Vieta, 38, 39, 50 n. ;

beginnings of modern signs, 49-50 n.

Aljabr, 64

al-Karkhi, 5, 41 .

al-Khuwarazmi, Muhammad b. Musa,

34. 5

Almukabala, 64

Amthor, 122

Anatolius, 2, 18

Andreas Dudicius Sbardellatus, 17, 25

Angelus Vergetius, 16

Anthology, arithmetical epigrams in, 113-

114; on Diophantus, 3; indeterminate

equations in, 114

Apollonius of Perga, 5, 6, 12, 18, 122

Approximations: Diophantus, 95-98; Py-

thagoreans, 117-118, 278; Archimedes,

278-279

Arabian scale of powers of unknown

compared with that of Diophantus,

40, 41

Arabic versions and commentaries, 19

Archimedes, n, 12, 35, 278, 279, 290;
Codex Paris, of, 48 ; Cattle-Problem,

121-124, 2 795 Arenarius, 35, 122

Arenarius of Archimedes, 35, 122

Arithmetica of Diophantus : different titles

by which known, 4-5 ; lost Books, 5-12;

division into Books, 5, 17-18; notation

in, 32-53 ; conspectus of problems in,

260-266

Arithmetical progression, summation of,

248-249
Ars rei et census, 20

Aryabhata, 281

Auria, Joseph, 15, 18

Bachet, 12, 16, 17, 21, 22., 25, 26-29, 35,

38, 45, 48, 80-82, 87 n., 101, 107 .,

109, no, 140 ., 173 ., 196-197 .,

2I3., 22O ., 23O.,232.. 234~235.,

246, 271, 273, 287, 293

"Back-reckoning," 56, 89, 93

Baillet, 45 .

Bessarion, Cardinal, 17, 20

Bhaskara, 281

Bianchini, 10

Billy, Jacques de, 28, 165 ., 166 ., 184 .,

221 ., 267, 304, 308, 320, 321, 326
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Bodleian MSS. of Dioph., 15, 34, 35 ;

MS. of Euclid, 35
Bombelli, Rafael, n, 27; Algebra of,

21, 22; symbols used by, 22, 38

Brahmagupta, 281

Brancker, Thomas, 286 n.

Brouncker, William, Viscount, 286, 288

Camerarius, Joachim, 21

Cantor, Moritz, 3 ., 6, 6$n., 112, n8.,
120 ., 125 ., 281

Cardano, 21, 23, 40
Cattle-Problem of Archimedes, n, 12,

121-124, 279

Cauchy, i88., 274

Censo, or Zensus, = square, 40, 41

Charmides, scholiast to, in, 113, 121-

122

Chasles, n
Cleonides, i6.
Coefficient, expressed by w\TJ0ot, multitude,

39, 64 n.

Colebrooke, 6, 281 .

Com, =the unknown, 22, 40

"Coss," 23

Cossali, i, 21 ., 40, 41, 140 .,

220 n.

Cracow MS. of Dioph., 5 ., 14, 18

Cube : Vieta's formulae for transforming

the sum of two cubes into a difference

of two cubes and vice versd, 101-103;

Fermat's extensions, ibid. ;
a cube cannot

be the sum of two cubes, i44. ; Euler's

solution of problem of finding all sets of

three cubes having a cube for their sum,

329-334; sign for cube of unknown or

x3
, 38, 129

" Cube-cube
"

(
= sixth power of unknown,

or .z6), sign for, 38, 129

Cubic equation, simple case of, 66-67,

242

Cuttaca ("pulveriser"), Indian method of,

283

Definitions of Diophantus, 32, 38, 39,

129-131

"Denominator," 137

Descartes, 271, 273; notation, sow.

Determinate equations : of first and second

degrees, 58 ; pure, 58-59 ;
mixed quad-

ratics, 59-65; simultaneous equations

leading to quadratics, 66 ; a particular

cubic, 66-67

"Diagonal-" numbers, 117, 118, 310

Dionysius, 2 ., 9, 119

Diophantus : spelling of name, i ; date,

1-2; epigram on, 3; works, 3-13; in

Arabia, 5-6, 19; "Pseudepigraphus,"

12, 31 ; MSS. of, 14-18; commentators

and editors, 18-31 ; notation of, 3253 ;

methods of solution, 54-98 ; porisms

f| 3> 8-10, 99-101 ; other assumptions,

103 sqq.; theorems in theory of numbers,

105-110; on numbers which are the

sum of two squares, 105-106; numbers

which are not the sum of two squares,

107-108; numbers not sum of three

squares, 108-109; numbers as sums of

four squares, no; Dioph. not inventor

of algebra, in-n6; nor of indeter-

minate analysis, 115-124; his work

a collection in best sense, 124; his ex-

tensions of theory of polygonal numbers,

127

Division, how represented by Dioph.,

44-47

Doppelmayer, ion.

Double-equations (for making two ex-

pressions in x simultaneously squares),

ii, 73-87, 91-92; two expressions of

first degree, 73-80, 80-82 n. ;
two ex-

pressions of second degree or one of first

and one of second, 81-87 ; general rule

for solving, 73, 146 ; double equations

for making one expression a square and

another a cube, 91-92
Dudicius Sbardellatus, Andreas, 17, 45

Egyptians: hau, sign for, 37; names for

successive powers, 41 ; beginnings ofalge-

bra, ^^-calculations, 111-112; method

of writing fractions, 1 1 2

Eisenlohr, 1 1 2 n.

Enestrom, 63 ., 286 n.

Epanthema of Thymaridas, 114-116

Epigrams, arithmetical, in Anthology, 113-

114; on Diophantus, 3; one in Dio-

phantus (v. 30), 124

Equality: abbreviation for, 47-48; sign in

Xylander, 48 ; the sign = due to Recorde,

50 .

Equations, see Determinate, Indeterminate,

Double, Triple, etc.

Eratosthenes, 121

Euclid, 8, n, 12, 19, 63, 117, 124, 132 .,

144 ., 191

Eudoxus, 114

Euler, 56, 71-72 ., 83-85 ., 86 ., 9O.,
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ioo., 102 ., 107, no, 145 w., 151 .,

160 ., 162 w., 178 ., 181-182 .,

188 ., 224 ., -236 ., 241 ., 242 .,

268, 272, 274, 275, 286, 288-292,

294, 297, 299 ., Supplement, 329-379

passim
Euler, J. A., 360
Eutocius, 5, 6

Exponents, modern way of writing due

to Descartes, 50 .

Fakh-ri, 5, 41 n.

"False supposition," use of, in Egypt,

112-113

Fermat, 28, 29, 30, 38, 78, 90, 101,

102, 103, 106, 107, 108, 109, no,

144-145 ., 163 ., 173 ., 179-180 w.,

182 ., 183 ., 184 ., 188 ., 190-

191 ., 197 ., 202 ., 204 ., 205 .,

213-214 ., 218 ., 220 ft., 223 .,

^29 n., 230 ., 231 ., 232 ., 233 .,

235 , 236 w., 239 ., 240 ., 241 .,

742 ., 246, 254 n., Supplement, 267-

328 passim, 364 ;

"
great theorem of

Fermat," 144-145 .; Fermat on num-

bers which are, or are not, the sums of

two, three, or four squares respectively,

106110, 267-275 ; on numbers of form

x* iyi or ix2 y2
, 276-277, of form

j^-f 3j/
2
, 275, and of form ^2 4-&y

2
, 276,

277; on equation x*-Ayz
i, 285-287 ;

x*-y*= z2 cannot be solved in integers,

224, 293-297; problems on right-angled

triangles, 204-205 ., 2i8-2i9., 220 w.,

229 n., 230 ., 23/-233M., 235 w., 236 .,

239-240 ., 297-318; Fermat's "triple-

equations," 321-328
Fractions : representation of, in Diophantus,

44-47; sign for i, 45; for |, 45;

sign for submultiple, 45-47

Frenicle, 102 ., 276, 277, 285, 287,

295-297, 39, 3io, 313, 314

Gardthausen, 35, 36

Geminus, 4

Georg v. Peurbach, 20

Georgius Pachymeres, 18, 19, 31, 37

Girard, Albert, 30, 106 .

Gnomons, 125

Gollob, 14, 18

Grammateus (Schreiber), Henricus, 49 n. ,

50 .

Greater and less, signs for, 50 n.

Gunther, 6, 278., 279^.

Hankel, 6, 54-55, 108 ., 281, 283, 284,

286 w.

Harriot, 50 n.

Hau (
= "heap"), the Egyptian unknown

quantity, 37, 112

Heiberg, 35, 48 ., 118, 205 n,

Henry, C., 13* 28 .

Herigone, 50 n.

Heron, 12, 13, 35, 36, 43, 44, 45, 63,

129 n.

Hippocrates of Chios, 63, 124

Holzmann, Wilhelm, see Xylander

Hultsch, 2., 3, 4, 9, 10, ir, 12, ign, t

35,36, 37,47M 63., ii8., 122, 253 .

Hydruntinus, loannes, 16

Hypatia, 5, 6, 14, 18

Hypsicles, 2
;

on polygonal numbers,

125-126, 252, 253

lamblichus, 2, 3,37 n., 49, 50, 115-116, 126

Ibn abi Usaibi'a, 19
Ibn al-Haitham, 19

Identical formulae in Diophantus, 104, 105

Indeterminate equations : single, of second

degree, 67-73 ;
of higher degrees, 87-

91 ; how to find fresh solutions when one

is known, 68-70 ; double-equations for

making two expressions simultaneously

squares, 11, (i) two expressions of first

degree, 73-80, 80-82 ., (2) two ofsecond

degree, or one of second and one of first,

81-87 ; double-equations for making one

expression a square and another a cube,

91-92 ; rule for solving double-equations
in which two expressions are to be made

squares, 73, 146 ; indeterminate equations

in Anthology, 114; other Greek ex-

amples, 118121; ix^ _y
2= A i solved

by Pythagoreans, 117-118, 278, 310
"Indian method," 12-13, 21 .

Indian solution of x*-Ayz =i, 281-285,

290, 292
Inventum Novum of J. de Billy, 28,

165 ., 184 ., 198 n., 204 ., 205 .,

221 ., 230 n., 231 ., 239 ., Supple-

ment, 267-328 passim
loannes Hydruntinus, 16

Ishaq b. Yunis, 19
Italian scale of powers, 40, 41

Jacobi, 108 ., 288

Kab, Arabic term for cube of unknown,

41 n.
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al-Karkhl, 5, 41 .

Kausler, 31

Kaye, G. R., 281

Kenyon, 45

Konen, 278 ., 279 n., 281 ., 285 n. t

286 n., 288, 292*.

Kronecker, 288

Krumbiegel, 122

Kummer, 145 n.

Lagrange, 72 ., no, 188 ., 272, 273,

274, 275, 276, 277, 285, 287, 288,

290, 292, 299, 300

Lato,
"
side," 40 n.

Legendre, 107 ., 109 ., i88., 273

Lehmann, 35

Lejeune-Dirichlet, 145 ., 288

Leon, 124

Leonardo of Pisa, n, 41 ., 120

Less and greater, signs for, 50 .

Limits : method of, 57, 94, 95 ; approxi-

mation to, 95-98

Logistica speciosa and Logistica numerosa

distinguished by Vieta, 49

Loria, 62 ., 157 ., 168 ., 175 n.,

i-j6n., 195 ., 197 ., 207 ., 240 .,

241 n.

Lousada, Abigail, 31

Luca Paciuolo, 21, 40

Madrid MS., 14, 15, 16

Mdl, Arabic term for square, 41 .

Manuscripts of Diophantus, 14-18

Maximus Planudes, 13, 14, 19, 21, 31,

43. 44. 45. 46 > 48

Measurement of a circle (Archimedes),

122

Mendoza, 17

Melrica of Heron, 43, 44, 45, 63, 129 .;

MS. of, 118

Metrodorus, 5, 113

Minus, Diophantus' sign for, 41-44,

130 ; same sign in Heron's Metrica,

43, 44 ; Bombelli's abbreviation, 22 ;

modern sign for, 49 .; Vieta's

sign for difference between (
= for ~),

50*.

Montchall, Carl v., 18

Montucla, 28

Moriastica of Diophantus, 3-4

Muhammad b. Musa al-Khuwarazmi, 34,

5

Multiplication, signs for, 50 .

Murr, Ch. Th, v., ion.

Negative quantities not recognised by

Diophantus as real, 52-53

Nesselmann, 6-10, i ., 25, 26 ., 29,

33. 34. 49-5L 55-58. 67, 87, 89, 93,
108 ., 140 ., 173 ., 204 ., 207 . ,

252 n,, 329 n.

Nicomachus, 2, 126, 127

Notation, algebraic: three stages, 49-51;

Diophantus' notation, 32-49, 51-52
Numbers which are the sum of two squares,

105-107, 268-271 ; numbers which are

not, 107-108, 271-272; numbers which

are the sum of three squares, 272-273 ;

numbers which are not, 108-109, 273 ;

numbers not square are the sum of two,

three or four squares, no, 273, 274;

corresponding theorem for triangles,

pentagons, etc., 188, 273

Numtrus, numero, term for unknown quan-

tity, 38, 40

Nunez, 23

Oughtred, 50 n.

Ozanam, 288

Pachymeres, Georgius, 18, 19, 31, 37

Paciuolo, Luca, 21, 40

Pappus, 11, 13

Papyrus Rhind, 112; Berlin papyrus

6619, 112

Paris MSS. of Diophantus, 15, 16, 18

Pazzi, A. M., 21

Pell, John, 31, 286 n., 288

"Pellian" equation, origin of this er-

roneous term, 286

Peurbach, G. von, 20

Philippus of Opus on polygonal numbers,

125

Planudes, Maximus, 13, 14, 19, 21, 31,

43. 44. 45. 46, 48

Plato, 4, 38*., in, 113, 116, 125

Plus, signs for, 22, 49*.; expressed in

Diophantus by juxtaposition, 39

Plutarch, 127

Polygonal Numbers, treatise on, 3, n-n,
247-259; sketch of history of subject,

124-127 ; began with Pythagoreans, 124-

125; figured by arrangement of dots,

125; Hypsicles on, 125-126, 252, 253;

Diophantus' extensions, 127

Porisms of Diophantus, 3, 8-10, 99-101,

201, 202, 214

Poselger, 30, 98
Powers of unknown quantity and signs
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for,, 37-39* 139; Italian and Arabian

scale (multiplicative) contrasted with Dio-

phantine (additive), 40-41 ; Egyptian

scale, 41

Proclus, 4., 113* 116, ii7., 118, 242 w.

Psellus, 2, 14, 18, 41, m
Ptolemy, 18, 44

Pythagoreans : 3 ; on rational right-angled

triangles, 116, 242 .; on polygonal

numbers, 124-125; on indeterminate

equation ix2 -y2=i, 117-118, 278,

310

Quadratic equations in Diophantus, 7-8,

59-66 ;
in Hippocrates of Chios, 63 ;

in Euclid, 63; in Heron, 63, 64

Quadratic inequalities in Diophantus,

60-63 ! limits to roots, 60-63, 65, 95

Qusta b. Luqa, 19

Radice (
= x), 40

Radix (=x), 38

Rahn, 50 ., 286 n. / ,

Ramus, i6n.

Rationality, Diophantus' view of, 52-53

Recorde, Robert, 50 .

Regiomontanus, 5, 17, 20, 23, 49
"
Regula falsi" in Egypt, 112-113

Relato, Italian term for certain powers
of unknown, 41

Res, alternative for radix, in sense of

unknown quantity, 38
Rhind Papyrus, 112

Right-angled triangles in rational numbers

in Diophantus, 93-94, 105-106 ; method

of "forming," 93-94; other methods of

forming attributed to Pythagoras, 116-

117, and to Plato, i 16-1 1 7 ; Euclid's for-

mula for, 117, 120; Pythagorean formula

once used by Diophantus, 242 ; Greek

indeterminate problems on, other than

those of Dioph., 119-121 ; Fermat's

theorems and problems on, 204-205 .,

218-219 ., 220 ., 229 ., 230 ., 231-

232 ., 235 ., 236 ., 239-240 ., 293-

318, 364-371

Rodet, 34, 35

Rosen, 50

Jtudioj 63 n.

Rudolff, Christoff, 23, 50 .

Salmasius, Claudius, 17

Sand-reckoner of Archimedes, ia
Saunderson, N., 27 .

Schaewen, P. v., 327, 328

Schmeisser, 31

Schone, 43, 45, 118

Schreiber, H., see Grammateus

Schuler, Wolfgang, 24

Schulz, 9, n, 18, 30, 31, 108 ., 140 .,

219 n.

Sebastian Theodoric, 24

Serenus, 12
" Side

" = square root, 65 .

"
Side-

" and "
diagonal-" numbers, Py-

thagorean solution of ix2 -yi=i by
means of, 117-118, 278, 310

Simon Simonius Lucensis, 25

Simplicius, 63 n.

Sirmondus, J., 27

Smith, H. J. S., 292
"
Species" (ef5r?) of algebraical quantities,

7 '3, 131

Speusippus on polygonal numbers, 125

"Square-cube" (
= x6

), sign for, 38,

129

Square root, sign V f r 5<>.; =v\evpd

(side), 65 .

"Square-square" (=x*), sign for, 38,

129

Squares : numbers as sum of two, three,

or four, no, 273, 274; of two, 105-107,

268-271; not of two, 107-108, 27F-272;
of three, 272-273 ; not of three, 108,

109, 273

Stevin, Simon, 29, 30 n.

Stifel, M.., 23, 49 M., 50 .

Submultiples, sign for, 454? ; decom-

position of fractions into, 46, 112;

submultiples of unknown and powers,

47

Subtraction, symbol for, 41-44
Suidas, i, 1 8, 22

Surdesolides, sursolida or supersolida, 41

Surds, 23-24

Suter, H., 19 .

Tannery, P., i ., 3, 5, 6, 8, 10-12, 14-19,

25, 28 n., 31, 32-37, 43-44, 45, io8w.,

in, 118 ., 125 n., 135 ., 138 .,

144 ., 148 ., 150 ., 156 ., 160 .,

198 ., 219 ., 234 ., 256, 278, 279,

280, 281, 290, 308

Tanto, unknown quantity, in Bombelli, 22

Tartaglia, 21, 40

Theaetetus, 124
Theon of Alexandria, 2, 18

Theon of Smyrna, 2, 36, 117, 126, 310
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Theudius, 124

Thompson, D'Arcy W., 37

Thymaridas, Epanthema of, 114-116
"
Triple-equations

"
of Fermat, 163 .,

179 ., 182/1., 102 n., 223 ., 224 .,

246, 321-328

" Units
"

(/xo'd5es)
= absolute term, 39-40;

abbreviation for, 39, 130
Unknown quantity (

= x), called in Dio-

phantus dpi.9ij.6s, "number": definition

of, 32, 115, 130; symbol for, 32-37,

130; signs for powers of, 38, 129;

signs for submultiples of unknown and

powers, 47, 130 ; Italian-Arabian and

Diophantine scales of powers, 40, 41 ;

Egyptian scale, 41; x .first used by

Descartes, 50 . ; other signs for, i, used

by Bombelli, 22, 38, N (for Numerus)

by Xylander, Bachet, Fermat and others,

38, R (Radix or Res), 38, Radice, Lato,

Cosa, 40 .

Vacca, G., io6.
Valla, Georgius, 48
Vatican MSS. of Diophantus, 5 ., 15, 16,

17

Vergetius, Angelus, 16

Vieta, 27, 38-39, 49, sow., 101, 102,

214 ., 285, 329, 331

Vossius, 31

Wallis, 40., 286, 287, 288, 289

Weber, Heinrich, 3 n.

Weber and Wellstein, 107 n., 145 .

Wertheim, 30, no ., 137 ., 138 .,

145 ., 151 ., 161 n., 209 ., 2ii .,

2I2W., 216 n., 217 ., 254 ., 256, 257,

286 ., 294, 295

Westermann, 125 .

Widman, 49 w.

Wieferich, 145 .

Woepcke, 5 .

"Wurm's problem," 123

JT for unknown quantity, originated with

Descartes, 50 .

Xylander, 17, 22-26, 27, 28, 29, 35, 38,

107-108 ., 140 .; Xylander's MS. of

Diophantus, 17, 25, 36

Zensus (=Ctnso), term for square of un-

known quantity, 38

Zetetica of Vieta, 27, 101, 285

Zeuthen, 118-121, 205 ., 278, 281 .,

290, 294-295
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